CSE 443 Compilers

Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

target-machine code
8.6 A Simple Code Generator [$p .542$]

- algorithm focuses on generation of code for a single basic block
- generates code for each three address code instruction
- manages register allocations/ assignment to avoid redundant loads/stores

Principal uses of registers

- operator operands must be in registers
- temporaries needed within block
- variables that span multiple blocks
- stack pointer
- function arguments
"We [...] assume that for each operator, there is exactly one machine instruction that takes the necessary operands in registers and performs that operation, leaving the result in a register. The machine instructions are of the form:
- LD reg, mem

movl	MEM, REG
movl	REG, MEM
addl	REG, REG

$\times 86$ assembly resources (will add more as we go along) https://en.wikipedia.org/wiki/X86_assembly_language https://gcc-renesas.com/pdf/manuā̄s/Assembľer. pdf man as <-- at OS prompt
8.6.1 Register and Address Descriptors

A three-address instruction of the form:

$$
v=a o p b
$$

we generate:
LD Rx, a
LD Ry, b
OP Rx, Rx, Ry
ST Rx, v
(c) 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent
8.6.1 Register and Address Descriptors

A three-address instruction of the
form:

$$
v=a o p b
$$

we generate:
LD Rx, a
LD Ry, b
OP Rx, Rx, Ry
ST Rx, v

- This results in many redundant loads and stores and may not make effective use of available registers.
- To better manage register use, employ two data structures:
- register descriptor
- address descriptor

register descriptor

"For each available register, a register descriptor keeps track of the variable names whose current value is in that register." [p. 643]

address descriplor

"For each program variable, an address descriptor keeps track of the Location or Locations where the current value of that variable can be found." [p. 543]

getreg function

"...getReg(I)...selects registers for each memory Location associated with the three-address instruction I." [p. 644]

Note that I is an instruction, not a variable!
(C) 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example
(paraphrased from 8.6 .2 , page 544)
A three-address instruction of the form:

$$
v=a o p b
$$

1. Use $\operatorname{gelReg}(v=a$ op b) bo select registers for v, a and $b: R v, R a$, and Rb respectively
2. If a is not already in $R a$, generate $L D$ Ra, a^{\prime} (where a^{\prime} is one of the possibly many current locations of a)
3. Similarly for b.
4. Generate OP $R v, R a, R b$
copy instructions

$$
x=y
$$

"We assume gelkeg will always choose the same register for both x and y. If y is not already in that register $R y$, then generate the machine instruction LD Ry, y. If y was already in Ry, we do nothing. It is only necessary that we adjust the register descriptor for Ry so that it includes x as one of the values found there." $[p, 644]$
(©) 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Writing back to memory at end of block
At the end of a basic block we must ensure that live variables are stored back into memory.
"...for each variable x whose address descriptor does not say that its value is located in the memory location for x, we must generate the instruction ST x, R, where R is a register in which x 's value exists at the end of the block." [p. 545]
(©) 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Updating register descriptors (RD) and address descriptors (AD)

1. LD R, x
(a) Set RD of R to only x
(b) Add R to AD of x
(c) Remove $R x$ from the AD of any variable other than x
2. ST x, R
(a) Add \& $\& x$ to AD of x
3. $O P R x, R y, R z$ for $x=y$ op z
(a) Set RD of $R x$ to only x
(b) Set AD of x to only $R x$ ($\& x$ not in AD of x !)
(c) Remove Rx from the AD of any variable other than x
4. "When we process a copy statement $x=y$, after generating the load for y into register Ry, if needed, and after managing descriptors as for all load statement (per rule 1):" [p. 545]
(a) Add x to the RD of Ry
(b) Set $A D$ of x to only $R y$

2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example $[p .546]$

$$
\begin{aligned}
& \mathrm{t}=\mathrm{a}-\mathrm{b} \quad \text { what does liveness and next use info looking like here? } \\
& \mathrm{u}=\mathrm{a}-\mathrm{c} \\
& \mathrm{v}=\mathrm{t}+\mathrm{u} \\
& \mathrm{a}=\mathrm{d} \\
& \mathrm{~d}=\mathrm{v}+\mathrm{u}
\end{aligned}
$$

Algorithm 8.7 [p. 528]
Determining the liveness and next-use information for each statement in a basic block.

INPUT: A basic block B of three address instructions. Assume the symbol table initially shows all non-temporary variables in B as being live on exit. Not this instruction specifically, but instructions of the form $x=y$ op $z, x=$ op y, or $x=y$.
OUTPUT: AE each statement i : $x=y+z i n B$, we attach to i the liveness and next-use information for x, y, and z.

METHOD: We start at the last statement in B and scan backwards to the beginning of B. At each statement $i: x=y+$ z in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set x to "not live" and "no next use".
3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.
© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
546]

INPUT: A basic block B of three address instructions. Assume the symbol table initially shows all non-temporary variables in B as being live on exit.
$a \quad b \quad c \quad d \quad k \quad u \quad v$
$L L L L$
(0) 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i :

$$
x=y+z
$$

in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set \times to "not live" and "no next use".
3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

$$
\left\{\begin{array}{l}
4: a=d \\
5: d=v+u
\end{array}\right.
$$

$a b c d \in u v$

LL LL
© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

$$
x=y+z
$$

in B do the following:

1) attach to statement the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set x to "not live" and "ho next use".
3) In the symbol table, set y and z to "live and the next uses of y and z to instruction 4 .

$$
\begin{aligned}
& 4: a=d \\
& 5: d=v+u
\end{aligned}
$$

a	b	c	d	t	u	v
L	L	L	D		L	L
					s	s

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

$$
x=y+z
$$

in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set \times to "not live" and "no next use".
3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

$$
\begin{aligned}
& 4: a=d \\
& 5: d=v+u
\end{aligned}
$$

a	b	c	d	t	u	v
L	L	L	D		L	L
					σ	σ

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i :

$$
x=y+z
$$

in B do the following:

1) attach to statement the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set x to "not live" and "ho next use".
3) In the symbol table, set y and z to "live and the next uses of y and z to instruction

$$
\left\{\begin{array}{l}
4: a=d \tag{D}\\
5: d=v+u
\end{array}\right.
$$

a	b	c	d	E	u	v
D	L	L	L		L	L
			4		σ	s

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i :

$$
x=y+z
$$

in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set x to "not live" and "no next use".
3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

$$
\begin{align*}
& 4: a=d \tag{D}\\
& 5: d=v+u
\end{align*}
$$

$$
L
$$

a	b	c	d	E	u	v
D	L	L	L		L	L
			4		s	s

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i :

$$
x=y+z
$$

in B do the following:

1) attach to statement the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set x to "not live" and "ho next use".
3) In the symbol table, set y and z to "live and the next uses of y and z to instruction 0.

$$
4: a=d
$$

D

$$
5: d=v+u
$$

L

a	b	c	d	t	u	v
D	L	L	L	L	L	D
			4	3	3	

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i :

$$
x=y+z
$$

in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set \times to "not live" and "no next use".
3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

$$
\left\lvert\, \begin{align*}
& 4: a=d \tag{D}\\
& 5: d=v+u
\end{align*}\right.
$$

a	b	c	d	t	u	v
D	L	L	L	L	L	D
			4	3	3	

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i :

$$
x=y+z
$$

in B do the following:

1) attach to statement the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set x to "not live" and "ho next use".
3) In the symbol table, set y and z to "live and the next uses of y and z to instruction in

a	b	c	d	c	u	v
L	L	L	L	L	D	D
2		2	4	3		

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

$$
x=y+z
$$

in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set \times to "not live" and "no next use".
3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

$$
\left\{\begin{array}{l}
4: a=d \tag{D}\\
5: d=v+u
\end{array}\right.
$$

a	b	c	d	t	u	v
L	L	L	L	L	D	D
2		2	4	3		

Example [p.
We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

$$
x=y+z
$$

in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and z.
2) In the symbol table, set x to "not live" ane "no next use".
3) In the syr biol table, set y and z to "live and the next uses of y and z to instruction 0 .
$a b c d d x$
$L: L A L D L D D$

1	1	2	4

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

