COMPLETS

Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall

© 2021 Carl Alphonce - Reproduction

8.6 A Simple Code Generator [p. 542]

algorithm focuses on generation of code for a single basic block

- generates code for each three address code instruction
- manages register allocations/ assignment to avoid redundant loads/stores

Principal uses of registers

- o operator operands must be in registers
- o temporaries needed within block
- o variables that span multiple blocks
- o stack pointer
- o function arguments

"We [...] assume that for each operator, there is exactly one machine instruction that takes the necessary operands in registers and performs that operation, leaving the result in a register. The machine instructions are of the form:

0	LD reg, mem	movl	MEM,	REG
Ø	ST mem, reg	movl	REG,	MEM
ð	0P reg, reg, reg" [p. 543]	addl	REG,	REG

x86 assembly resources (will add more as we go along)
https://en.wikipedia.org/wiki/X86_assembly_language
https://gcc-renesas.com/pdf/manuals/Assembler.pdf
man as <--- at OS prompt</pre>

8.6.1 Register and Address Descriptors A three-address instruction of the form:

v=aopb

we generate: LD Rx, a LD Ry, b OP Rx, Rx, Ry ST Rx, v

8.6.1 Register and	Addres	s Descriptors
A three-address in	structio	n of the
form:	where a,	b, and v are int
v=aopb	v = a +	b
we generate:		asm 1 n
LD Rx, a	movl	-4(%rbp), %edx
LD Ry, b	movl	-8(%rbp), %eax
OP RX, RX, RY	addl	%edx, %eax
ST RX, V	movl	<pre>%eax, -12(%rbp)</pre>

 This results in many redundant loads and stores and may not make effective use of available registers.

 To better manage register use, employ two data structures:

- register descriptor

- address descriptor

register descriptor

"For each available register, a register descriptor keeps track of the variable names whose current value is in that register." [p. 543]

address descriptor

"For each program variable, an address descriptor keeps track of the location or locations where the current value of that variable can be found." [p. 543]

gelkes function

"...getReg(I)...selects registers for each memory location associated with the three-address instruction I." [p. 544]

> Note that I is an instruction, not a variable!

(paraphrased from 8.6.2, page 544)

- A three-address instruction of the form: $v = a \ op b$
- Use getReg(v = a op b) to select registers for v, a and b: Rv, Ra, and Rb respectively
- 2. If a is not already in Ra, generate LD Ra, a' (where a' is one of the possibly many current locations of a)
- 3. Similarly for b.
- 4. Generate OP RV, Ra, Rb

copy instructions x = y

"We assume getReg will always choose the same register for both x and y. If y is not already in that register Ry, then generate the machine instruction LD Ry, y. If y was already in Ry, we do nothing. It is only necessary that we adjust the register descriptor for Ry so that it includes x as one of the values found there." [p. 544]

Writing back to memory at end of block

At the end of a basic block we must ensure that live variables are stored back into memory.

"...for each variable x whose address descriptor does not say that its value is located in the memory location for x, we must generate the instruction ST x, R, where R is a register in which x's value exists at the end of the block." [p. 545]

Updating register descriptors (RD) and address descriptors (AD)

1. LD R, x

(a) set RD of R to only x

(b) Add R to AD of x

(c) Remove Rx from the AD of any variable other than x 2. ST x, R

(a) Add &x to AD of x

3. OP RX, RY, RZ for
$$x = y \circ p z$$

(a) set RD of Rx to only x

(b) set AD of x to only Rx (&x not in AD of x!)

(c) Remove Rx from the AD of any variable other than x 4. "When we process a copy statement x = y, after generating the load for y into register Ry, if needed, and after managing descriptors as for all load statement (per rule 1):" [p. 545]

(a) Add x to the RD of Ry (b) set AD of x to only Ry

what does liveness and next use info looking like here?

t = a - b u = a - c v = t + u a = dd = v + u

Algorithm 8.7 [p. 528] Determining the liveness and next-use information for each statement in a basic block.

INPUT: A basic block B of three address instructions. Assume the symbol table initially shows all non-temporary variables in B as being live on exit. Not this instruction specifically, but instructions of the form

 $x = y \circ p z, x = \circ p y, or x = y.$

OUTPUT: At each statement i: x = y + z in B, we attach to i the liveness and next-use information for x, y, and z.

METHOD: We start at the last statement in B and scan backwards to the beginning of B. At each statement i: x = y + z in B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.

2) In the symbol table, set x to "not live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

Next uses of y and z to instruction i. \odot 2021 Carl Alphonce – Reproduction of this material is prohibited without the author's consent

Example [p. 546]

INPUT: A basic block B of three address instructions. Assume the symbol table initially shows all non-temporary variables in B as being live on exit.

a	b	С	d	Ŀ	u	V
L	L	L	L			

Example [p. 546]

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

x = y + zin B do the following:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.
 In the symbol table, set x to "not

live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

a	b	C	d	Ŀ	u	V
L	L	L	L			

Example [p. 546

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

x = y + zin B do the following:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.
 In the symbol table, set x to "not live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

a	b	С	d	Ľ	u	V
L	L	L	D		L	L
					5	5

EXAMPLE [7. 546]

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

x = y + zin B do the following:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z,
 In the symbol table, set x to "not

live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

a	b	С	d	Ŀ	u	V
L	L	L	D		L	L
					5	5

Example [p. 546

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

x = y + zin B do the following:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.
 In the symbol table, set x to "not live" and "no next use".
 In the symbol table, set y and z

to "live" and the next uses of y and z to instruction i.

a	b	С	d	Ŀ	u	V
D	L	L	L		L	L
			4		5	5

Example [p] 546

				a	b	с	d	ĩ	u	\checkmark
1:t =	a		b							
2:u =	а	-	С							
3:v =	t	+	U						L 5	L S
4:a =	d			L			D		V	Ŵ
5:d =	V	+	U				L			

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

x = y + zin B do the following:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.
 In the symbol table, set x to "not

2) In the symbol table, set x to "not live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

a	b	С	d	Ŀ	u	\checkmark
D	L	L	L		L	L
			4		5	5

EXAMPLE [19, 54+6] We start at the last statement in B

	of B. At each statement i:
V	x = y + z in B do the following:
	1) attach to statement i the information currently found in the symbol table regarding the next-use
	and liveness of x, y, and Z. 2) In the symbol table, set x to "not
L	live" and "no next use". 3) In the symbol table, set y and z to "live" and the next uses of y and
5	z to instruction i.

a	b	С	d	Ŀ	u	V
D	L	L	L	L	L	D
			4	3	3	

					a	b	с	d	Ľ	u	V
1: t		а		b							
2:u	=	а	_	С							
3:v	=	t	+	U						L 5	L
4: a	=	d			L			D			
5: d		V	÷	U				L			

Example [p] 546

				a	Ь	с	d	Ŀ	u	V
1:t =	a		b							
2:u =	а	-	С	D		L			L 3	
3:v =	t	+	U						L 5	L 5
4:a =	d			L			D			
5:d =	V	+	U				L			

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

x = y + zin B do the following:

1) attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.

2) In the symbol table, set x to "not live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

a	b	С	d	Ŀ	u	V
D	L	L	L	L.	L	D
			4	3	3	

Example [200

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

x = y + zin B do the following:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.
 In the symbol table, set x to "not live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction t.

a	Ь	С	d	Ŀ	U	V
L	L	L	L	L	D	D
2		2	4	3		

Example [p. 546

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

					a	b	с	d	Ľ	u	V	
1:t		а		b	L 2	L			L 3			
2 : u	-	а	-	С	D		L			L 3		
3:v	=	t	+	U						L 5	L 5	
4:a	=	d			L			D				
5 : d	=	V	+	U				L				

	X	=	4	+	Z				
in			5.A.			ollo	-	ing]:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.
 In the symbol table, set x to "not

live" and "no next use".

3) In the symbol table, set y and z to "live" and the next uses of y and z to instruction i.

a	b	С	d	Ŀ	u	V
L	L	L	L	L	D	D
2		2	4	3		

Example [

We start at the last statement in B and scan backwards to the beginning of B. At each statement i:

	a	Ь	с	d	Ľ	u	V	
1:t = a - b	L 2	L			L 3			
2:u = a - c	D		L			L 3		
3:v = t + u						L 5	L 5	
4:a = d	L			D				
5:d = v + u				L				

x = y + zin B do the following:

 attach to statement i the information currently found in the symbol table regarding the next-use and liveness of x, y, and Z.
 In the symbol table, set x to "not live" and "no next use".
 In the symbol table, set y and z

to "live" and the next uses of y and z to instruction i.

a	Ь	С	d	Ŀ	u	\checkmark
L	L	L	L	D	D	D
1	1	2	4			