CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Phases of
Qa

aompiiﬁ.\“

Symbol Table

Qpﬁmiz.a&mns

Flgure 1.6

page § of bext

© 2021 Carl ALFhow::e - (Zeproclm:ﬁo

character stream

Y

Lexical Analyzer

|
token stream

Y

Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

: | S
iutermediate representaticn

Y

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y

Algebraic Identities 2 £36]

X F0us O X = X
X ¥] =71 % ="x
X = O =X
x. 41 =x

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Algebraic Idem&&es 2 £36]
— h. &

- 4
Z*X X + X
x/zzx*Oqﬁ

Ca use left and right shift for inteqgers

But see next slide and these Linlks:

hek ?s://ev\.mik‘i‘pedio&.org/wm‘a/AriEhmeELc,__sM{E

htps://stackoverflow.com/questions/19517% 6%/ integer-division-by-negative-number

h&&ysz//www.mic:rosa&.tom/ew-us/researah/wF:-—c:on&em&/u?wads/ Rol1&/02/divmodnote-
letterpdf

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

https://en.wikipedia.org/wiki/Arithmetic_shift
https://stackoverflow.com/questions/19517868/integer-division-by-negative-number
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf

4--bik examples
MQMwmega&ve values

0011l =» +3

Logical shifts
right: cool — +1 [3/2] =1
left: 0110 — +&

Arithmwmetic shifts

right: cool — +1
left: 0110 — +&

© 2020 Carl Aiph

once - Reproduction of this material is Prokibi&ed without the author's consenl

t

4-bik exam rtes
neqgative va

1101 ~> ~3
Logical shifts Logical shifts

right: 0110 — +&
left: 1010 — -&

Arithmetic shifts
right shift sign extension:
umexpea&ed resulk?

Arithwetic shifts
right: 1110 — -2 |-3/2] =
left: 1010 — -6

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

C vs ?v&hm\

#include <stdio.h> def printQuotientRemainder(a,b):
void printQuotientRemainder(int a, int b) { q = a//b
int q = a/b; r = a%b
int r = a%b; print("%d/%d = %d remainder %d\t\t" % (a,b,q,r),
printf("%d/%d = %d remainder %d\t\t",a,b,q,r); end="")
printf("%dx%d + %d => %d = %d\n",b,q,r, (bxg+r),a); print("%dx%d + %d => %d = %d" % (b,q,r, (bxg+r),a))
}
def main():
int main(void) { printQuotientRemainder(5, 2)
printQuotientRemainder(5, 2); printQuotientRemainder (-5, 2)
printQuotientRemainder(-5, 2); printQuotientRemainder(5,-2)
printQuotientRemainder(5,-2); printQuotientRemainder(-5,-2)
printQuotientRemainder(-5,-2); printQuotientRemainder(2, 5)
printQuotientRemainder(2, 5); printQuotientRemainder (-2, 5)
printQuotientRemainder(-2, 5); printQuotientRemainder(2,-5)
printQuotientRemainder(2,-5); printQuotientRemainder(-2,-5)
printQuotientRemainder(-2,-5);
return 0; main()
}
5/ 2 = 2 remainder 1 ¥t o => vh = ok 5/ 2 = 2 remainder 1 P) AT sth = 5
-5/ 2 = -2 remainder -1 2%-2 + -1 = -5 = -5 -5/ 2 = -3 remainder 1 ZR=3 gl =5 = _§
5/-2 = =2 remainder 1 Mk S R B G 5/-2 = =3 remainder -1 k-3 ~17=> 5 = 5
-5/-2 = 2 remainder -1 =2k =] = A hasneh -5/-2 = 2 remainder -1 k). 4+ —]1'=> -5 = -5
2/ 5 = 0 remainder 2 Dol g Qs = P el 2/ 5 = 0 remainder 2 S0 . 2 = 2 = 2
-2/ 5 = 0 remainder -2 5« 0 + -2 => -2 = =2 -2/ 5 = -1 remainder 3 el e) = 20
2/-5 = 0 remainder 2 A S R e G 2/-5 = -1 remainder -3 —-5%-1 + -3 == 2= 2
-2/-5 = 0 remainder -2 5% Q0 + -2 => -2 = =2 -2/-5 = 0 remainder -2 5% Q0 + -2 => -2 = =2

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Algebraic Identities 2 £36]

Constant folding
"...evaluate constant expressions ak com[wit@.

e and répta&@. Fhe cownskank expressions
bv heir values.”

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Algebraic Identities 2 £36]

See foobtnote 2:

"Arithmetic expressions should be evaluated the
same way ak c:om[a&t@. Lime as &he:j are at run kime,
K. Thompson has suqqested an elegant solution to
constant folding: compile the constant expression,
execute the target code on the spot, and replace
the expression with the resulk. Thus, the tompater
does ok need to contain an interpreter.”

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

‘P@.@.phoi& opEimizaﬁiom

[p 542]

"The peephole is a small, sliding
window on a pragro\mﬁ" fp £49]

"In general, repec&ed passes over the
target code are hecessary to get the
moximum benefit." [p. §50]

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

‘Peepkoi.@. op%imaz.a&ww redundant LDAT

LD KO, a
ST o, Ro

1f the ST instruction has a label,
cannol remove ik, (If nstructions are
Un the same block we're OK.)

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: unreachable code

This case balees
several slides...

i £2K qoto L1
qoto L2
LIz

L2¢ ...

SMPF’OSQ K s a constant.

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1
qoto L2
L1: ...do something...

L2: ...do something...

Eliminake ju,mps over ju,mps

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1 f £'=K qgoto L2

qoto L2] o,
L1 s
L2% ... ’

Eliminake jumps over jumps

© 2021 Carl Alphonce - Keprotiuetieon—o-thtsal erial is Frckibi&ed without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1 f £'=K qgoto L2
qoto L2

L1zse
LZ: ...

L2: ... ’

1{ there are no

Jumps to L1, we can remove
Llabel

© 2021 Carl Ai.pkc:-vwe - KEprocnetiemn—op-thts Mal erial is Frokibi&ed without the aubthor's consent

Peephole optimization: unreachable code

i £2K qoto L1 f £'=K qgoto L2
qoto L2

L1zse
LZ: ...

L2: ... ’

1f £ is set to a
constant value other thawn K,
thewn...

© 2021 Carl Ai.pkc:-vwe - KEprocnetiemn—op-thts Mal erial is Frokibi&ed without the aubthor's consent

Peephole optimization: unreachable code

i £2K qoto L1 if true gobo L2

qoto L2
L1 s
L2% ... ’

condikional \}u,m[p
becomes unconditional...

© 2021 Carl Alphonce - Keprotiuetieon—o-thtsal erial is Frckibi&ed without the author's consent

Peephole optimization: unreachable code

i £2K qoto L1 qoto L2
qoto L2
Ll L& ...
L2: ...
eand bhe
unreachable code can be
removed.,

© 2021 Carl Ai.pkc:-vwe - KEprocnetiemn—op-thts Mal erial is Frokibi&ed without the aubthor's consent

Peephole optimization: flow-of-control

qoto L1

L1l: qoto L2

12;

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

qgoto L1 qoto L2 -

L1l: qoto L2 L1l: qoto L2~

- L2:

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

qoto L1 qoto L2

L1l: qoto L2

L1l: qoto L2~

12; 12;

1{ there are no ju,mps to L1,
and L1 is erecec&ed bv ain uhcondikional
ju.m[p...

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

qoto L1 qoto L2

L1l: qoto L2

12;

12;

LEhen we can elimminabe the skakemenkt
Llabelled L1

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Peephole optimization: flow-of-control

4 a < b gqobo L1

L1l: qoto L2

12;

...stmilar arquments can be made for
conditional jumps.

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

0~F9E£m£z.aﬁ0m

o The semamntics of a program be
preserved by optimizations.

o The compiler does not know a
programmer’s intent - it can only
reason about the program as
wriktten.

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

Data—~flow amatjsis

o View program execubtion as a
sequence of state btransformatiomns,

o Each program state consists of all
the variables in the program along
with their current values.

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consenl

State Eransformation

; taput state >

© 2020 Carl Alphonce - Reproduc&i.on of this material is Proktbi&ed without the author's consent

State Eransformation

Program
states are
called
program
pom&s‘.

A sequence
of program
Foiv\%s Ls
called a Fw&hﬂ.

© 2020 Carl Alphonce - raeprodwcki.on of this material is Prokibi&ed without the author's consent

Data-flow analysis

o Begin by considering only the flow
grapk for a single function.

‘Prcaper&@.s

o Within a basic blocke:

- Program point after a statement is
same as program point before the
next staktement.

- Why?

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

‘Prcaper&@.s

o Belween basic blociks:

- "If there is an edge from block B1
to block B2, then the program point
after the Last statement of Bl may be
followed immediately by the
program point before the first
statement of B2."

2 597]

Execubtion Fw&k

"An execution path (or just path) from point p: to
point pn [is] a sequence of points p1, pz, .oy Pn
such that for each i = 1,2,...,n-1, either

1. pi is the point immediately preceding a
statement and pin is the point immediately
following that same statement, or

2. pu is the end of some block and pia is the
beginning of a successor blocie.”

Lp. 597]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

Example 9.% (p. §9%)

d1: a = 1 Bl Path: (1,2,3,4,9)

(2) .

(3) * _4 Path: (1,2,3,4,5,&;7,2’,3,4;9)
U read() <= © goto B4 .‘

u}) dZ: b - O
A3 a = 243
qoto BR

a has value 1 first
time (8) is executed.,
d1 reaches (5) on
the first iteration.,

] o has value 243
/ ot (8) on the second
and subsequ@\&

tkerakions.

Soe | B&'g. d3 reaches (8) on

those ikerakions.

© 2020 Carl Alphonce - Reproduction of this material is Frokibi&e_d without the author's consent

Reaching definitions

"The definitions that may reach a
program point along some path are
khown as reaching definitions.”

2 59% |

© 2020 Carl Alphonce - Reproduction of this material is Frokibi&e_d without the author's consenl

Gathering different data
for different uses

"... ot point (8) ... the value of a is one of { 1, 243 }
and ... it may be defined by one of { 41, 43}

Lp. 59% |

"... ab point (8) ... there is ho definition that must be the
definition of a ab thak point, so this set is emply for a
at point (8). Even i a variable has o unique definition
at a point, that definition must assign a constant to the
variable. Thus, we may simply describe certain variables
as 'not a constant', instead of collecting all their
possible values or all their possible definitions.”

Lp. 599]

© 2020 Carl Alphonce - Reproduc&i.on of this material is Proktbi&ed without the author's consent

9.2.2 Data-flow analysis schema

"In each application of data—flow analysis, we
associate with every program point a data-
flow value that represents an abstraction of
the set of all possible program states that can
be observed at that paim&." {F" £99]

"The set of Possibt& data—flow values is the
domain...” [F' £99]

"We denocte the data—flow values before and
after each statement s by IN[s] and OUT[s],
respectively.” [p. £99]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

9.2.2 Data-flow analysis schema

"The data—flow Frobi.em is to find a
solubtion to a set of cownstrainks on the
IN[s]'s and OUT[s]'s, for all staktements
s. There are two sets of conskraints:
those based on the semantics of the
statements ("transfer functions™) and
those based own the flow of control.”

Lp. 599]

Transfer functions

Information can flow forwards or
backwards.

Forward flow: OUT[s] = £ (IN[s])

Backward flow: IN[s] = 9. (OUT[s])

Conbrol flow constraints

In a sequence si, Sz, -..,5a without jumps,
IN[si1] = OUT[s] for all i=1,2,...n-1

For data—flow bebween blocks, take "the
union of the definitions after Last
statements of each of the predecessor
blockes,” 2 600]

9.2.3 Data—flow schemas on basic blocks

Suppose a basic block B consists of the
sequence of statements si, sz, ...,5.. Define
IN[R] = IN[s1] and OUTIRB] = OUT[s.].

The transfer function of B:

{B = ‘{sw’ see O ‘fsz" “fsl

The transfer function of B:

oUT[B] = f=(IN[B])

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

9.2.3 Data—flow schemas on basic blocks

Forward flow problem
oUT[R] = f=(IN[B])
INCET 21 Lo o oulte]
Backward flow problem
IN[B] = gs(OUT[B])

OUT{‘BJ = U S a successor of B IN{SJ

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

