
 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Phases of
a

compiler

Figure 1.6,
page 5 of text

Optimizations

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algebraic Identities [p. 536]

x + 0 = 0 + x = x
x * 1 = 1 * x = x

x - 0 = x
x / 1 = x

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algebraic Identities [p. 536]
x2 = x * x

2 * x = x + x
x / 2 = x * 0.5

Can use left and right shift for integers

But see next slide and these links:

https://en.wikipedia.org/wiki/Arithmetic_shift

https://stackoverflow.com/questions/19517868/integer-division-by-negative-number

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-
letter.pdf

https://en.wikipedia.org/wiki/Arithmetic_shift
https://stackoverflow.com/questions/19517868/integer-division-by-negative-number
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

0011 -> +3

Logical shifts
right: 0001 —> +1

left: 0110 —> +6

Arithmetic shifts
right: 0001 —> +1
left: 0110 —> +6

⌊3/2⌋ = 1

4-bit examples
non-negative values

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

1101 -> -3

Logical shifts
right: 0110 —> +6
left: 1010 —> -6

Arithmetic shifts
right: 1110 —> -2

left: 1010 —> -6
⌊−3/2⌋ = − 2

Logical shifts

Arithmetic shifts
right shift sign extension:

unexpected result?

4-bit examples
negative values

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

C vs Python
#include <stdio.h>
void printQuotientRemainder(int a, int b) {
 int q = a/b;
 int r = a%b;
 printf("%d/%d = %d remainder %d\t\t",a,b,q,r);
 printf("%d*%d + %d => %d = %d\n",b,q,r,(b*q+r),a);
}

int main(void) {
 printQuotientRemainder(5, 2);
 printQuotientRemainder(-5, 2);
 printQuotientRemainder(5,-2);
 printQuotientRemainder(-5,-2);
 printQuotientRemainder(2, 5);
 printQuotientRemainder(-2, 5);
 printQuotientRemainder(2,-5);
 printQuotientRemainder(-2,-5);
 return 0;
}

 5/ 2 = 2 remainder 1	 	 2* 2 + 1 => 5 = 5
-5/ 2 = -2 remainder -1	 	 2*-2 + -1 => -5 = -5
 5/-2 = -2 remainder 1	 	 -2*-2 + 1 => 5 = 5
-5/-2 = 2 remainder -1	 	 -2* 2 + -1 => -5 = -5
 2/ 5 = 0 remainder 2	 	 5* 0 + 2 => 2 = 2
-2/ 5 = 0 remainder -2	 	 5* 0 + -2 => -2 = -2
 2/-5 = 0 remainder 2	 	 -5* 0 + 2 => 2 = 2
-2/-5 = 0 remainder -2	 	 -5* 0 + -2 => -2 = -2

def printQuotientRemainder(a,b):
 q = a//b
 r = a%b
 print("%d/%d = %d remainder %d\t\t" % (a,b,q,r),
end='')
 print("%d*%d + %d => %d = %d" % (b,q,r,(b*q+r),a))

def main():
 printQuotientRemainder(5, 2)
 printQuotientRemainder(-5, 2)
 printQuotientRemainder(5,-2)
 printQuotientRemainder(-5,-2)
 printQuotientRemainder(2, 5)
 printQuotientRemainder(-2, 5)
 printQuotientRemainder(2,-5)
 printQuotientRemainder(-2,-5)

main()

 5/ 2 = 2 remainder 1	 	 2* 2 + 1 => 5 = 5
-5/ 2 = -3 remainder 1	 	 2*-3 + 1 => -5 = -5
 5/-2 = -3 remainder -1	 	 -2*-3 + -1 => 5 = 5
-5/-2 = 2 remainder -1	 	 -2* 2 + -1 => -5 = -5
 2/ 5 = 0 remainder 2	 	 5* 0 + 2 => 2 = 2
-2/ 5 = -1 remainder 3	 	 5*-1 + 3 => -2 = -2
 2/-5 = -1 remainder -3	 	 -5*-1 + -3 => 2 = 2
-2/-5 = 0 remainder -2	 	 -5* 0 + -2 => -2 = -2

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algebraic Identities [p. 536]

Constant folding

"…evaluate constant expressions at compile
time and replace the constant expressions

by their values."

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Algebraic Identities [p. 536]

See footnote 2:

"Arithmetic expressions should be evaluated the
same way at compile time as they are at run time.
K. Thompson has suggested an elegant solution to
constant folding: compile the constant expression,
execute the target code on the spot, and replace
the expression with the result. Thus, the compiler
does not need to contain an interpreter."

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization
[p 549]

"The peephole is a small, sliding
window on a program." [p. 549]

"In general, repeated passes over the
target code are necessary to get the
maximum benefit." [p. 550]

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

LD R0, a
ST a, R0

If the ST instruction has a label,
cannot remove it. (If instructions are
in the same block we're OK.)

Peephole optimization: redundant LD/ST

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

Peephole optimization: unreachable code

Suppose K is a constant.

This case takes
several slides…

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

 if E=K goto L1
 goto L2
L1: …do something…
…
L2: …do something…
…

Eliminate jumps over jumps

Peephole optimization: unreachable code

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if E!=K goto L2
L1: …
 …
L2: …
 …

Eliminate jumps over jumps

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if E!=K goto L2
 …
 …
L2: …
 …

If there are no
jumps to L1, we can remove

label

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

If E is set to a
constant value other than K,

then…

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if E!=K goto L2
 …
 …
L2: …
 …

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

…conditional jump
becomes unconditional…

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 if true goto L2
 …
 …
L2: …
 …

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: unreachable code

…and the
unreachable code can be

removed.

 if E=K goto L1
 goto L2
L1: …
 …
L2: …
 …

 goto L2
 …
L2: …
 …

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 goto L2
 …
L1: goto L2
 …
l2:

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 goto L2
 …
L1: goto L2
 …
l2:

If there are no jumps to L1,
and L1 is preceded by an unconditional

jump…

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 goto L1
 …
L1: goto L2
 …
l2:

 goto L2
 …

 …
l2:

…then we can eliminate the statement
labelled L1

 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Peephole optimization: flow-of-control

 if a < b goto L1
 …
L1: goto L2
 …
l2:

 if a < b goto L2
 …

 …
l2:

…similar arguments can be made for
conditional jumps.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Optimization

The semantics of a program must be
preserved by optimizations.

The compiler does not know a
programmer's intent - it can only
reason about the program as
written.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Data-flow analysis

View program execution as a
sequence of state transformations.

Each program state consists of all
the variables in the program along
with their current values.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

State transformation

intermediate instruction

prog
state

prog
state

input state

output state

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

State transformation

intermediate instruction

Program
states are
called

program
points.

A sequence
of program
points is

called a path.

prog
state

prog
state

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Data-flow analysis

Begin by considering only the flow
graph for a single function.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Properties

Within a basic block:

- Program point after a statement is
same as program point before the
next statement.

- Why?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Properties

Between basic blocks:

- "If there is an edge from block B1
to block B2, then the program point
after the last statement of B1 may be
followed immediately by the
program point before the first
statement of B2."

[p. 597]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Execution path

"An execution path (or just path) from point p1 to
point pn [is] a sequence of points p1, p2, …, pn
such that for each i = 1,2,…,n-1, either

1. pi is the point immediately preceding a
statement and pi+1 is the point immediately
following that same statement, or

2. pi is the end of some block and pi+1 is the
beginning of a successor block."

[p. 597]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 9.8 (p. 598)
d1: a = 1

if read() <= 0 goto B4

d2: b = a
d3: a = 243

goto B2

B1

B2

B3

… B4

(1)

(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

Path: (1,2,3,4,9)

Path: (1,2,3,4,5,6,7,8,3,4,9)

a has value 1 first
time (5) is executed.
d1 reaches (5) on
the first iteration.

a has value 243
at (5) on the second

and subsequent
iterations.

d3 reaches (5) on
those iterations.

Program points

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Reaching definitions

"The definitions that may reach a
program point along some path are
known as reaching definitions."

[p. 598]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Gathering different data
for different uses

"… at point (5) … the value of a is one of { 1 , 243 }
and … it may be defined by one of { d1 , d3 }."

[p. 598]

"… at point (5) … there is no definition that must be the
definition of a at that point, so this set is empty for a
at point (5). Even if a variable has a unique definition
at a point, that definition must assign a constant to the
variable. Thus, we may simply describe certain variables
as 'not a constant', instead of collecting all their
possible values or all their possible definitions."

[p. 599]

for 'constant folding'

to determine possible values

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.2 Data-flow analysis schema

"In each application of data-flow analysis, we
associate with every program point a data-
flow value that represents an abstraction of
the set of all possible program states that can
be observed at that point." [p. 599]

"The set of possible data-flow values is the
domain…" [p. 599]

"We denote the data-flow values before and
after each statement s by IN[s] and OUT[s],
respectively." [p. 599]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.2 Data-flow analysis schema

"The data-flow problem is to find a
solution to a set of constraints on the
IN[s]'s and OUT[s]'s, for all statements
s. There are two sets of constraints:
those based on the semantics of the
statements ("transfer functions") and
those based on the flow of control."
[p. 599]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Transfer functions

Information can flow forwards or
backwards.

Forward flow: OUT[s] = fs (IN[s])

Backward flow: IN[s] = gs (OUT[s])

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Control flow constraints

In a sequence s1, s2, …,sn without jumps,

IN[si+1] = OUT[si] for all i=1,2,…,n-1

For data-flow between blocks, take "the
union of the definitions after last
statements of each of the predecessor
blocks." [p. 600]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.3 Data-flow schemas on basic blocks

Suppose a basic block B consists of the
sequence of statements s1, s2, …,sn. Define
IN[B] = IN[s1] and OUT[B] = OUT[sn].

The transfer function of B:

fB = fsn∘ … ∘ fs2∘ fs1

The transfer function of B:

OUT[B] = fB(IN[B])

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9.2.3 Data-flow schemas on basic blocks

Forward flow problem

OUT[B] = fB(IN[B])

IN[B] = ∪P a predecessor of B OUT[P]

Backward flow problem

IN[B] = gB(OUT[B])

OUT[B] = ∪S a successor of B IN[S]

