CSE 443 Compilers

Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

9.2.3 Data-flow schemas on basic blocks
"...data-flow equations usually do not have a unique solution. Our goal is to find the most 'precise' solution that satisfies the two sets of constraints: control-flow and transfer constraints. That is, we need a solution that encourages valid code improvements, but does not justify unsafe transformations..."

$$
[p, 601]
$$

9.2.4 Reaching definitions
"A definition d reaches a point p if there is a path from the point immediately following d to p, such that d is not 'killed' along that path." [p.601]
"We kill a definition of a variable x if there is any other definition of x anywhere along the path." [p.601]
9.2.4 Reaching definitions
"A definition of a variable x is a statement that assigns, or may assign, a value to x."

What is meant by "may assign"?
9.2.4 Reaching definitions
"Procedure parameters, array accesses, and indirect references all may have aliases, and it is not easy to bell if a statement is referring to a particular variable x." [p.601]
"Program analysis must be conservative" [p.601]

Transfer equations for reaching definitions
For this definition:

$$
d: u=v+w
$$

σ is a data-
The transfer equation is:

$$
f_{d}(\sigma)=\operatorname{gen} d u\left(\sigma-\text { kill}_{d}\right)
$$

where gend $=\{d\}$. Kill is the set of all other definitions of u in the program
The argument of a transfer function is a data-flow value, which "represents an abstraction of the set of all possible program states that can be observed for that point." [p. 599] Recall too that a program state consists of all the variables in the program along with their current values.

Figure 9.13 \square
(p.604)

$$
d 3: a=u 1
$$

$$
\begin{aligned}
& \text { gens2 }^{\text {gen }}=\{ \} \\
& \text { kill }=\{?\}
\end{aligned}
$$

d4: $i=i+1$
ds: $j=j-1$

$$
\begin{aligned}
& \operatorname{gen}_{83}=\{?\} \\
& \text { kill }_{83}=\{?\}
\end{aligned}
$$

$d 7: i=u 3$

$$
\begin{aligned}
g_{\text {gn } 44} & =\{?\} \\
k i l l_{84} & =\{?\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { geners }=\{?\} \\
& \text { kill }_{82}=\{?\}
\end{aligned}
$$

Figure 9.13 \square (p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

da: $i=i+1$
db: $j=j-1$
$B 2$

$$
\begin{aligned}
& \operatorname{gen}_{31}=\left\{d_{1}, d_{2}, d 3\right\} \\
& \text { kill }_{31}=\{?\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { gen }_{82}=\{?\} \\
& \text { kill }_{32}=\{?\} \\
& \text { gens }=\{?\} \\
& \text { kill }_{33}=\{?\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gen}_{34}=\{?\} \\
& \operatorname{kill}_{34}=\{?\}
\end{aligned}
$$

Figure 9.13 ENTRY

$$
(p, 604)
$$

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& g_{\text {gens }}=\{d 1, d 2, d 3\} \\
& \text { kill }_{51}=\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gen}_{32}=\{?\} \\
& \operatorname{kill}_{32}=\{?\} \\
& \operatorname{gen}_{33}=\{?\} \\
& \operatorname{kill}_{33}=\{?\} \\
& \operatorname{gen}_{34}=\{?\} \\
& \operatorname{kill}_{34}=\{?\}
\end{aligned}
$$

Figure 9.13 \square (p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

da: $i=i+1$
db: $j=j-1$
$d 6: a=u 2$
gen en $_{31}=\left\{d_{1}, d_{2}, d_{3}\right\}$
kill $_{81}=\left\{d 4, d 5, d_{6}, d_{7}\right\}$

Q: Why kill $d 4-d 7$ here, since they are not on a path to B1?

$$
\begin{aligned}
& \operatorname{gen}_{33}=\{?\} \\
& \text { kill }_{33}=\{?\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gen}_{34}=\{?\} \\
& \operatorname{kill}_{34}=\{?\}
\end{aligned}
$$

Figure 9.13 \square (p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

gens $^{\text {en }}\left\{d_{1}, d 2, d 3\right\}$
kill $_{32}=\{d 4, d s, d 6, d 7\}$

Q: Why kill $d 4-d 7$ here, since they are not on a path to B1?

A: Here we are looking just at this block, and not trying to account for flow between blocks.

Inter-block flow is taken into account later.

Figure 9.13 ENTRY

$$
(p, 604)
$$

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& g_{\text {gens }}=\{d 1, d 2, d 3\} \\
& \text { kill }_{51}=\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gen}_{32}=\{?\} \\
& \operatorname{kill}_{32}=\{?\} \\
& \operatorname{gen}_{33}=\{?\} \\
& \operatorname{kill}_{33}=\{?\} \\
& \operatorname{gen}_{34}=\{?\} \\
& \operatorname{kill}_{34}=\{?\}
\end{aligned}
$$

Figure 9.13 ENTRY

$$
(p, 604)
$$

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& g_{\text {gens }}=\{d 1, d 2, d 3\} \\
& \text { kill }_{51}=\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gen}_{32}=\{d 4, d 5\} \\
& \operatorname{killl}_{32}=\{?\} \\
& \operatorname{gen}_{33}=\{?\} \\
& \operatorname{kill}_{33}=\{?\} \\
& \operatorname{gen}_{34}=\{?\} \\
& \text { kill }_{34}=\{?\}
\end{aligned}
$$

34

$$
d 7: i=u 3
$$

Figure 9.13 \square (p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& g_{\text {gens }}=\{d 1, d 2, d 3\} \\
& \text { kill }_{81}=\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { gen } \begin{array}{l}
\text { gill }=\{d 4, d s\} \\
\text { kill }_{83}=\{d 1, d 2, d 7\} \\
\operatorname{gen}_{83}=\{?\} \\
\text { kill }_{83}=\{?\} \\
\operatorname{gen}_{84}=\{?\} \\
\text { kill }_{84}=\{?\}
\end{array}
\end{aligned}
$$

Figure 9.13 \square (p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& \text { genes }^{\text {kill }}=\{d 1, d 2, d 3\} \\
& =\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sense }=\{d 4, d s\} \\
& \operatorname{kill}_{\text {sc }}=\{d 1, d 2, d 7\} \\
& g^{e^{n}} 3=\{d 6\} \\
& \text { kill }_{83}=\{\text { ? }\} \\
& \text { gen }_{84}=\{?\} \\
& \text { kill }_{84}=\{?\}
\end{aligned}
$$ BY

Figure 9.13 \square (p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& \text { genes }^{\text {kill }}=\{d 1, d 2, d 3\} \\
& =\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sense }=\{d 4, d s\} \\
& \mathrm{killl}_{\mathrm{sz}}=\{d 1, d 2, d 7\} \\
& \text { gen }_{33}=\{d 6\} \\
& k_{i l l} 3=\{d 3\} \\
& \text { gen }_{84}=\{?\} \\
& \text { kill }_{84}=\{?\}
\end{aligned}
$$ BY

Figure 9.13 \square (p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& g_{\text {gens }}=\{d 1, d 2, d 3\} \\
& \text { kill }_{81}=\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { gene32 }=\{d 4, d s\} \\
& \mathrm{killl}_{\mathrm{sz}}=\{d 1, d 2, d 7\} \\
& \text { gen }_{33}=\{d 6\} \\
& k_{i l l} 3=\{d 3\} \\
& \operatorname{gen}_{84}=\{d 7\} \\
& \mathrm{kill}_{84}=\{?\}
\end{aligned}
$$

Figure 9.13 \square
(p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& \text { genes }^{\text {kill }}=\{d 1, d 2, d 3\} \\
& =\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sense }=\{d 4, d s\} \\
& \mathrm{killl}_{\mathrm{sz}}=\{d 1, d 2, d 7\} \\
& \text { gen }_{33}=\{d 6\} \\
& k_{i l l} 3=\{d 3\} \\
& \text { gens }_{4}=\{d 7\} \\
& \text { kill }_{34}=\{d 1, d 4\}
\end{aligned}
$$ $B 4$

Extending transfer equations from statements to blocks

Composition of f_{1} and f_{2} :

$$
\begin{aligned}
& f_{1}(x)=\operatorname{gen}_{1} \cup\left(x-\operatorname{kiLL}_{1}\right) \\
& f_{2}(x)=\operatorname{gen}_{2} u\left(x-\operatorname{kill}_{2}\right) \\
& f_{2}\left(f_{1}(x)\right)=\operatorname{gen}_{2} \cup\left(\left(\operatorname{gen}_{1} u\left(x-\operatorname{kiL}_{1}\right)\right)-\operatorname{kiLL}_{2}\right) \\
& =\operatorname{gen}_{2} \cup\left(\left(\operatorname{gen}_{1}-k i L_{2}\right) \cup\left(\left(x-k i L_{1}\right)-k i L_{2}\right)\right) \\
& =\operatorname{gen}_{2} \cup\left(\operatorname{gen}_{1}-\text { kill }_{2}\right) \cup\left(x-\left(\text { kill }_{1} \cup \text { kill }_{2}\right)\right)
\end{aligned}
$$

Extending transfer equations from statements to blocks

In general:

$$
\begin{aligned}
& f_{B}(x)=\operatorname{gen}_{B} u\left(x-k i L_{B}\right) \\
& \operatorname{kill}_{B}=U_{i \in n} \text { kill }_{i} \\
& \operatorname{gen}_{B}=\operatorname{gen} u \\
& \text { (genn-1 - kiln) u } \\
& \text { (genn-2 - kill } \left.{ }_{n-1}-\text { kill }_{n}\right) u \\
& \text {... U } \\
& \left(\operatorname{gen}_{1}-\text { kill }_{2}-\text { kill }_{3}-\ldots-\operatorname{kill}_{n}\right)
\end{aligned}
$$

Extending transfer equations from statements to blocks
"The gen set contains all the definitions inside the block that are "visible" immediately after the block - we refer to them as downward exposed. A definition is downwards exposed in a basic block only if it is not "killed" by a subsequent definition to the same variable inside the same basic block." [p.606]

Iterative algorithm for reaching definitions

Algorithm [p. 606]
INPUT: A flow graph for which kill B and gen have been computed for each block B.

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry and exit of each block B of the flow graph

METHOD:

```
OUT[ENTRY] \(=\varnothing\)
for (each basic block \(B\) other than ENTRY) \(\{\operatorname{OUT}[B]=\varnothing\}\)
while (changes to any OUT occurs) \{
    for (each basic block B other than ENTRY) \{
        \(\operatorname{IN}[B]=\bigcup_{P \text { a predecessor of } B}\) OUT \([P]\)
        \(0 \cup T[B]=\operatorname{gen} B\left(\operatorname{IN}[B]-\operatorname{kiLL}_{B}\right)\)
```

 \}
 \}

Iterative algorithm for reaching definitions

Algorithm [p. 606]
INPUT: A flow graph for which each block B.

OUTPUT: IN [B] and OUT [B], the and exit of each block B of the

Written this way lo allow different entry conditions for different data flow algorithms.
METHOD:

$$
\begin{aligned}
& \text { OUT }[\text { ENTRY }]=\varnothing \\
& \text { for (each basic block B other than ENTRY) \{ OU } \\
& \text { while (changes to any OUT occurs) \{ } \\
& \text { for (each basic block B other than ENTRY) \{ } \\
& \text { IN [B] = U Pa predecessor of BUT [P] } \\
& \text { OUT }[B]=\text { gen } u\left(\operatorname{IN}[B]-\text { kill }_{B}\right)
\end{aligned}
$$

$$
\text { for (each basic block } B \text { other than ENTRY) }\{O U T[B]=\varnothing\}
$$

Figure 9.13 \square
(p.604)

$$
\begin{gathered}
d 1: i=m-1 \\
d 2: j=n \\
d 3: a=u 1
\end{gathered}
$$

dy: $i=i+1$
dst: $j=j-1$
BR

$$
\begin{aligned}
& \text { genes }^{\text {kill }}=\{d 1, d 2, d 3\} \\
& =\{d 4, d s, d 6, d 7\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sense }=\{d 4, d s\} \\
& \mathrm{killl}_{\mathrm{sz}}=\{d 1, d 2, d 7\} \\
& \text { gen }_{33}=\{d 6\} \\
& k_{i l l} 3=\{d 3\} \\
& \text { gens }_{4}=\{d 7\} \\
& \text { kill }_{34}=\{d 1, d 4\}
\end{aligned}
$$ $B 4$

Example 9.12 - building off figure 9.13

OUT[ENTRY] $=\varnothing$
for (each basic block B other than ENTRY) \{OU T[B]= $=\varnothing$ \}
while (changes to any OUT occurs) \{
for (each basic block B other than ENTRY) \{
$\operatorname{IN}[B]=u p_{p}$ a predecessor of B OUT [P]
$\operatorname{OUT}[B]=\operatorname{sen} B\left(\operatorname{IN}[B]-\mathrm{kill}_{B}\right)$
\}
\}

$\operatorname{OUT}[B]^{\circ} \operatorname{IN}[B]^{1}$ OUT $[B]^{1} \operatorname{IN}[B]^{2}$ OUT $[B]^{2}$

$B 1$
Represent d_{i} as a bit vector, where each d is a definition from 9.13
Union of sets A U B: A OR B Difference of sets A - B: A AND B'
Compute in order B1, B2, B3, B4, EXIT
$B 3$
For example:
$\operatorname{IN}[B 2]_{1}^{1}=\operatorname{OUT}[B 1]_{1} \cup \operatorname{OUT}[B 4]^{\circ}=1110000 \cup 0000000=1110000$
$B 4$
EXIT

```
OUT[B2]1 = gen}32\cup(IN[B2]1 - kiLL[B2) (
                                =000 1100 + (111 0000-1100001)
                        =0001100 +001 0000=001 1100
```


Example 9.12 - building off figure 9.13

```
    OUT[ENTRY] = \varnothing
    for (each basic block B other than ENTRY) {OUT [B]=\varnothing}
    while (changes to any OUT occurs) {
    for (each basic block B other than ENTRY) {
        IN[B] = UP a predecessor of B OUT[P]
        OUT[B]=genB \cup(IN[B] - kill B )
    }
}
```

$\operatorname{OUT}[B]^{\circ} \operatorname{IN}[B]^{1} \operatorname{OUT}[B]^{1} \operatorname{IN}[B]^{2}$ out $[B]^{2}$
B1 0000000
E2 0000000
B3 0000000
B4 0000000
EXIT 0000000

Example 9.12

```
OUT[ENTRY] = \varnothing
for (each basic block B other than ENTRY) {OUT[B]=\varnothing }
while (changes to any OUT occurs) {
    for (each basic block B other than ENTRY) {
        IN[B] = up a predecessor of B OUT[P]
        OUT[B]=\operatorname{gen}
    }
}
```



```
B1 00000000000000 1110000
B2 000 0000 IN[B1] = pred(B1) = ENTRY
OUT[B1] = gens1 \cup(IN[B1] - kill B1 )
B3 000 0000 gen31 ={d1, d2, d3}
    kille1 ={d4, ds,d6,d7}
B4 0000000
EXIT 00000000
```


Example 9.12

```
OUT[ENTRY] = \varnothing
for (each basic block B other than ENTRY) {OUT[B]=\varnothing }
while (changes to any OUT occurs) {
    for (each basic block B other than ENTRY) {
        IN[B] = up a predecessor of B OUT[P]
        OUT[B] = genBu(IN[B]-\mp@subsup{kill B}{B}{\prime})
    }
}
```


$\operatorname{OUT}[B]^{\circ} \operatorname{IN}[B]^{1} \operatorname{OUT}[B]^{1} \operatorname{IN}[B]^{2}$ out $[B]^{2}$

BI 000000000000001110000
BR 000000011100000011100
BS $0000000 \operatorname{IN}[B 2]=\operatorname{pred}(B 2)=$ OUT [BI] \cup OUT $[B 4]$
OUT[BR] = gens $\cup\left(\operatorname{IN}[B 2]-\right.$ kill $\left._{32}\right)$
BA 0000000 gen $_{32}=\{d 4, d s\}$
EXIT 0000000

Example 9.12

```
OUT[ENTRY] = \varnothing
for (each basic block B other than ENTRY) {OUT[B]=\varnothing }
while (changes to any OUT occurs) {
    for (each basic block B other than ENTRY) {
        IN[B] = up a predecessor of B OUT[P]
        OUT[B]=\operatorname{gen}
    }
}
```


$\operatorname{OUT}[B]^{\circ} \operatorname{IN}[B]^{1} \operatorname{OUT}[B]^{1} \operatorname{IN}[B]^{2}$ out $[B]^{2}$

BI 000000000000001110000
BR 000000011100000011100
BS 000000000111000001110
BA $0000000 \operatorname{IN[B3]}=\operatorname{pred}(\mathrm{B3})=\operatorname{oUT}[B 2]$
$\operatorname{OUT}[B 3]=\operatorname{gen} 33 \cup\left(\operatorname{IN}[B 3]-\right.$ kill $\left._{33}\right)$
gen $_{33}=\left\{d_{6}\right\}$
EXIT 0000000
kill $_{B 3}=\{d 3\}$

Example 9.12

```
OUT[ENTRY] = \varnothing
for (each basic block B other than ENTRY) {OUT[B]=\varnothing }
while (changes to any OUT occurs) {
    for (each basic block B other than ENTRY) {
        IN[B] = up a predecessor of B OUT[P]
        OUT[B]=\operatorname{gen}
    }
}
```


$\operatorname{OUT}[B]^{\circ} \operatorname{IN}[B]^{2}$ out $[B]^{2} \operatorname{IN}[B]^{2}$ OUT $[B]^{2}$

BI 000000000000001110000
BR 000000011100000011100
BS 000000000111000001110
gen $_{34}=\{d 7\}$
000000000111100010111 $\mathrm{kill}_{84}=\left\{d_{1}, d_{4}\right\}$
$\operatorname{IN}[B 4]=$ OUT [BR] \cup OUT [BS] OUT $[B 4]=\operatorname{gen} 84 \cup\left(\right.$ IN $^{2}[B 4]-$ kill $\left._{84}\right)$

Example 9.12

$$
\text { OUT[ENTRY] }=\varnothing
$$

for (each basic block B other than ENTRY) \{OUT[B] $=\varnothing$ \} while (changes to any OUT occurs) \{
for (each basic block B other than ENTRY) \{ $\operatorname{IN}[B]=u p^{\text {a predecessor of } B \text { OUT }[P]}$ $\operatorname{OUT}[B]=\operatorname{sen} B\left(\operatorname{IN}[B]-\mathrm{kill}_{B}\right)$
\}
\}

$\operatorname{OUT}[B]^{\circ} \operatorname{IN}[B]^{2} \operatorname{out}[B]^{2} \operatorname{IN}[B]^{2}$ out $[B]^{2}$
B1 000000000000001110000

B2 000000011100000011100
$B 3000000000111000001110$

B4 0000000001 11100010111

EXIT 000000000101110010111
$\operatorname{IN}[E X I T]=\operatorname{OUT}[\mathrm{B} 4]$
OUT[EXIT] = IN[EXIT]

OUT[ENTRY] $=\varnothing$
for (each basic block B other than ENTRY) $\{\operatorname{OUT}[B]=\varnothing\}$ while (changes to any OUT occurs) \{
for (each basic block B other than ENTRY) \{ $\operatorname{IN}[B]=$ Up a predecessor of B OUT $[P]$ $\operatorname{OUT}[B]=\operatorname{gen}_{B} \cup\left(\operatorname{IN}[B]-\operatorname{kiLL}_{B}\right)$

	OUT $[B]^{0}$	$\operatorname{IN}[B]^{1}$	OUT $[B]^{1}$	$\operatorname{IN}[B]^{2}$	$\operatorname{OUT}[B]^{2}$	
B1	0000000	0000000	1110000	0000000	1110000	
B2	0000000	1110000	0011100	1110111	0011110	
B3	0000000	0011100	000	1110		
B4	0000000	0011110	0010111			
EXIT	0000000	0010111	0010111			

OUT[ENTRY] $=\varnothing$
for (each basic block B other than ENTRY) $\{\operatorname{OUT}[B]=\varnothing$ \} while (changes to any OUT occurs) \{
for (each basic block B other than ENTRY) \{ $\operatorname{IN}[B]=$ Up a predecessor of B OUT $[P]$ $\operatorname{OUT}[B]=\operatorname{gen}_{B} \cup\left(\operatorname{IN}[B]-\operatorname{kiLL}_{B}\right)$

	OUT $[B]^{0}$	$\operatorname{IN}[B]^{1}$	$\operatorname{OUT}[B]^{1}$	$\operatorname{IN}[B]^{2}$	OUT $[B]^{2}$	
B1	00000000000000	1110000	0000000	1110000		
B2	0000000	1110000	0011100	1110111	0011110	
B3	0000000	0011100	0001110	0011110	0001110	
B4	0000000	0011110	001	0111		
EXIT	0000000	0010111	001	0111		

OUT[ENTRY] $=\varnothing$
for (each basic block B other than ENTRY) $\{\operatorname{OUT}[B]=\varnothing$ \} while (changes to any OUT occurs) \{
for (each basic block B other than ENTRY) \{ $\operatorname{IN}[B]=$ Up a predecessor of B OUT $[P]$ $\operatorname{OUT}[B]=\operatorname{gen}_{B} \cup\left(\operatorname{IN}[B]-\operatorname{kiLL}_{B}\right)$

	OUT[$[3]$	$\mathrm{IN}[\mathrm{B}]^{1}$	OUT $[B]^{2}$	$\operatorname{IN}[B]^{2}$	OUT $[B]^{2}$
B1	0000000	0000000	1110000	0000000	1110000
B2	0000000	1110000	0011100	1110111	0011110
B3	0000000	0011100	0001110	0011110	0001110
B4	0000000	OO1 11110	0010111	0011110	0010111
EXIT	0000000	0010111	0010111		

OUT[ENTRY] $=\varnothing$

for (each basic block B other than ENTRY) $\{\operatorname{OUT}[B]=\varnothing\}$ while (changes to any OUT occurs) \{
for (each basic block B other than ENTRY) \{ $\operatorname{IN}[B]=u p^{\text {a p predecessor of } B \text { OUT }[P]}$ $\operatorname{OUT}[B]=\operatorname{gen} B\left(\operatorname{IN}[B]-\mathrm{kill}_{3}\right)$

9.2.4 Reaching definitions

Useful for constant propagation and constant folding ($\$ 8.5 .4$ - p. 536, §9.4-p.632). Additional discussion and examples:
en.wikipedia.org/wiki/Constant_folding
Useful for global common subexpression elimination ($\S 9.1 .4-p .588, \xi 9.2 .6$ - p. 610, §9.6 p. 639). Additional discussion and examples:
en.wikipedia.org/wiki/Common_subexpression_elimination
9.2.6 Live variable analysis

Useful for effective register management.
"After a value is computed in a register, and presumably used within a block, it is not necessary to store that value if it is dead at the end of the block. Also, if all registers are full and we need another register, we should favor using a register with a dead value, since that value does not have to be stored." [p.608]
9.2.6 Live variable analysis
"In live variable analysis we wish ko know for variable x and point p whether the value of x at p could be used along some path in the flow graph starting at p. If so, we say x is live al p; otherwise, x is dead al $p . "[p, 608]$

In contrast to reaching analysis, which used a forward transfer function, live variable analysis uses a backward transfer function.
9.2.6 Live variable analysis definitions, page 609
def s is "the set of variables defined in B prior to any use of that variable in $B^{\prime \prime}$
use ${ }_{3}$ is "the set of variables whose values may be used in B prior to any definition of the variable"

9.2.6 Live variable analysis definitions, page 609

$\operatorname{IN}[E X I T]=\varnothing$
$\operatorname{IN}[B]=\operatorname{use}_{B} \cup\left(\right.$ OUT $\left.[B]-\operatorname{def}_{B}\right)$
$\operatorname{OUT}[B]=U_{\text {sa successor of }} \operatorname{IN}[S]$
9.2.6 Live variable analysis

Algorithm [p.610]
INPUT: A flow graph with def and use computed for each block.
OUTPUT: IN [B] and OUT [B], the set of variables live on entry and exit of each block of the flow graph.

METHOD:

```
    IN[EXIT] = 
    for (each basic block B other than EXIT) {IN[B]=\varnothing}
    while (changes to any IN occur) {
        for (each basic block B other than EXIT) {
            OUT[B] = U S S successor of B IN[S]
            IN[B] =useB \cup (OUT[B]- defB)
        }
    }
```

9.2.6 Available expressions
"An expression $x+y$ is available at a point p if every path from the entry node to p evaluates to $x+y$, and after the last such evaluation prior to reaching p, there are no subsequent assignments bo x or y." $[p, 610]$
9.2.6 Available expressions
"...a block kills expression $x+y$ if it assigns (or may assign) x or y and does not subsequently recompute $x+y$." [p.610]
"A block generates expression $x+y$ if it definitely evaluates $x+y$ and does not subsequently define x or y." [p.611]

Figure 9.17

"...the expression $4 *$ i in block B3 will be a common subexpression if it *i is available al the entry point of block B3."

$$
\left[\begin{array}{ll}
p & 611
\end{array}\right]
$$

Figure 9.17

"It will be available if i is not assigned a new value in block B2, ..." [p 611]

Here 4 * i in B3 can be replaced by value of $E 1$, regardless of which branch is taken.

Figure 9.17

"... or if ... 4*i is

 recomputed after i is assigned in B2." [p 611]Again, 4 * i in B3 can be replaced by value of $k 1$, regardless of which branch is taken
(since ll contains the
 correct value of $4 * i$ in both cases)
9.2.6 Available expressions Informally:
"If at point p set S of expressions is available, and q is the point after p, with statement $x=y+z$ between them, then we form the set of expressions available al q by the following steps:

1. Add to s the expression $y+z$.
2. Delete from S any expression involving variable $x^{\prime \prime}$.

Example 9.15

Statement

$$
a=b+c
$$

$$
b=a-d
$$

$$
c=b+c
$$

$$
d=a-d
$$

Available expressions
\varnothing

$$
\{b+c\}
$$

$$
\{a-d\}
$$

$$
\{a-d\}
$$

9.2.6 Available expressions
"We can find available expressions in a manner reminiscent of the way reaching definitions are computed. Suppose U is the 'universal' set of all expressions appearing on the right of one or more statement of the program. For each block B, let IN [B] be the set of expressions in U that are available at the point just before the beginning of B. Let OUT $[B]$ be the same for the point following the end of B. Define e. gen to be the expressions generated by B and $e_{\text {mill }}$ ki l be the set of expressions in U killed in B. Note that IN, OUT, amgen, and emill can all be represented by bit vectors." $[p, 612]$

9.2.6 Available expressions definitions, page 612

OUT[ENTRY] $=\varnothing$
$\operatorname{OUT}[B]=e_{-m e n} \cap\left(\operatorname{IN}[B]-e_{m i l l}\right)$
$\operatorname{IN}[B]=\cap_{P \text { a predecessor of } B}$ OUT $[P]$

9.2.6 Available expressions

 definitions, page 612OUT[ENTRY] $=\varnothing$
0 OT $[B]=e_{-\operatorname{gen}}^{B} \cap\left(\operatorname{IN}[B]-e_{m} \operatorname{kilL}_{B}\right)$
$\operatorname{IN}[B]=\bigcap_{P \text { a predecessor of } B} \operatorname{OUT}[P]$
Note use of \cap rather than U.
"...an expression is available at the beginning of a block only if it is available at the end of ALL its predecessors." [p. 612]

9.2.6 Available expressions

Algorithm [p.614]
INPUT: A flow graph with e_kill ${ }_{B}$ and $e_{-m g e n}$ computed for each block B. The initial block is B1.

OUTPUT: IN [B] and OUT [B], the set of expressions available at the entry and exit of each block of the flow graph.

METHOD:
OUT[ENTRY] $=\varnothing$
for (each basic block B other than ENTRY) \{OUT $[B]=U\}$ while (changes to any OUT occur) \{
for (each basic block B other than EXIT) \{
$\operatorname{IN}[B]=\cap_{P \text { a predecessor of } B}$ OUT $[P]$
OUT [B] $=e_{-m e n} \cap\left(\operatorname{IN}[B]-e_{m} \operatorname{kill}_{B}\right)$
\}
9.2.6 Available expressions

Algorithm $[p, 614]$
INPUT: A flow graph with e. kill and amgen computed for each block B. The initial block is B1.

OUTPUT: IN [B] and OUT [B], the set of expressions available at the entry and exit of each block of the flow graph.

METHOD:

$$
\text { OUT[ENTRY] }=\varnothing
$$

for (each basic block B other than ENTRY) $\{\operatorname{OUT}[B]=U\}$ while (changes to any OUT occur) \{ for (each basic block B other than EXIT) \{ $\operatorname{IN}[B]=\cap_{P}$ a predecessor of B OUT $[P]$

Recall: U is $\operatorname{OUT}[B]=e_{\ldots \operatorname{gen}} \cap\left(\operatorname{IN}[B]-e_{m} k i L_{B}\right)$ set of all \} expressions
9.2 Summary

