CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

© 2021 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

character stream

Y

Lexical Analyzer

Phases of

|
Q token stream

Y
@0 m F E;i,@_r Syntax Analyzer

[
syntax tree

Y

Semantic Analyzer

1
syntax tree

Y

Symbol Table Intermediate Code Generator

: | S
iutermediate representaticn

Y
Machine-Independent

0‘ F& Lm E«&O\& E.f(:} NS Code Optimizer

|
intermediate representation

Code Generator

FT E,guf,re. 1 ‘6 5 target—mai:hine code

Machine-Dependent
Code Optimizer

page § of bext

|
target-machine code

Y

ronsent

9.2.3 Data—flow schemas on basic blocks

"...data-flow equations usually do not have a
unique solution. Qur goal is to find the most
'precise’ solution that sakisfies the two sebks of
constraints: conbrol-flow and bransfer
conskrainks, That is, we need a solution thak
encourages valid code improvements, buk
does not justify unsafe transformations...”

[p. &01]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

92.4 Reaching definitions

"A definition d reaches a point p if there is a
path from the point immediately following 4
to p, such that d is not 'killed' along that
path." [p. 601]

"We kill a definition of a variable x if there
ls ahy other definition of x anywhere along
the path." [p. &o1]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

92.4 Reaching definitions

"A definiktion of a variable x is a
statewment that assigns, or may assigi,
a value to x."

What is meant b'j "maj assign"?

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consent

92.4 Reaching definitions

"Procedure paramelers, array accesses,
and indirect references all may have
aliases, and it is not easy to tell if a
statement is referring to a particular
variable x." [p. 601]

"Program &matvsis musk be
conservative” [p. 601]

© 2020 Carl Alphonce - Reproduction of this material is Proktbi&ed without the author's consenl

Transfer equations for reaching definitions

For this c{eﬂfiniﬁaw
A w=v+w

The transfer equation is:
fa(o) = gena u (o= killa)

where gena = {d}. Kkilld is the set of all
other definitions of u in the program

The arqument of a transfer function is a data-flow value,
which "represents an abstraction of the set of all

program states that can be observed for that point.” [p. §92]
in the program along with their current values.

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's co

senk

Flqure 213
(p. 604)

ENTRY

o) =

Al: L

N
W

W

B1
=l

B2
genez = { ¢ }
eillg; =234 2 }
genss = § 7 }

B4

genps = {? }
R‘Etiiaq. - ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

LY

Flgure 2.13 =

(p. &604)

o) =

®1
Al:i=2=wm - 1
gens: = | d1, d2, 43 }
M’ELLB:L - { ? }

B2
gens: = 121
kille: = { ? }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

LY

Flgure 2.13 =

(p. &604)

o) =

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
gens: = 121
kille: = { ? }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Flqure 213 ENTRY
(p. 604) v

Adl: L=wm - 1
d2: J = n
d3: a = ul

21

gens1 = { dl, 42, 43 }
kille: = { 44, 45, 46, 47 |

© zo20 CA]L Alphonce - Reproduction of this material is prohibited without the author's consent
P P P

EXIT

Flqure 213

ENTRY

(p. 604)

Bl
dl: i =wm - 1
d2: J = n
d3: a = ul

gens1 = { d1, 42, 43 }
kille, = { d4, ds, 46, d7

© 2020 CQ]L Alphonce - Reproductioh o

EXIT

LY

Flgure 2.13 =

(p. &604)

o) =

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
gens: = 121
kille: = { ? }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

EXIT

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
illz; = { ¢ }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

genes = { 7 }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
H‘ELLB,?, -— { ? }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

B4 genps = {? }
R‘Etiiaq. - { ? %

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

LY

o) =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

B4 qensg = { A7 }
killes = { A1 / A4 }

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

Extending Eransfer @.qu.o&mms
from statements ko blocks

Composition of £ and £z
£1(x) = gens U { x - killy)
£20x) = geme U (x = killz)
£ £20¢)) = geme U ((gens u ((x = kills)) - kille)
= gene U { (geny = kill) v ((x = killy) = wille))

= gene u (geny = killz) u { x = (eilly u kill:))

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Extending Eransfer @.qu.o&mms
from statements ko blocks

In general:

fa(x) = gems u (x - kills)

kille = Ui kill;

SQMB - SQMM U
(9enn-1 - killn) u
(9etn-z - killu-1 - keilln) U
sse U

(g9en - Wills - kills - ... = killn)

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Extending Eransfer @.qu.o&mms
from statements ko blocks

"The gen set contains all the definitions inside
the block that are "visible” immediately after the
block - we refer to them as downwards exposed.
A definition is downwards exposed in a basic
block only if it is not "killed” by a subsequent
definition to the same variable inside the same
basic block.” [p. 608]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Iterative algorithm for reaching definitions

Algorithm [p. 606]

INPUT: A flow graph for which kills and gens have been computed for
each block B,

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry
and exit of each block B of the flow graph

METHOD:
OUT[ENTRY] = @
for (each basic block B other than ENTRY) { OUT[B] = o |
while (changes to any OUT occurs) |
for (each basic block B other than ENTRY) {

IN[‘B] = U‘Pa predecessor of B QUT{‘(P]
oUT[B] = gens U IN[R] - kills)

;
;

See foothote 4 on page £06
© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

Iterative alqorithm for reaching definitions

Algorithm [p. 606

INPUT: A flow graph for whs.ch |
each block B, '

OUTPUT: IN[B] and OUT[RB], the | (.
and exit of each block B of the

METHOD:
OUT[ENTRY] = 2 e
for (each basic block B other than ENTRY) { OUT [B] = o |
while (changes to any OUT occurs) |

for (each basic block B other than ENTRY) {

IN{BJ — U‘P a predecessor of B OUT[?J
OUTIB] = gens u (IN[B] - kills)

;
;

See foothote 4 on page £06
© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

LY

o =

Flgure 2.13 =
(p. 604)

B1
dl: i =2=wm - 1
gens: = | d1, d2, 43 }

kille, = { 44, 45, 46, 47 |

B2
geneg: = { Cilfe-, A5 }
killez = { 41, 42, 47 }

SQV\BB — { dﬁ }
killzgs = | 43 }

B4 qensg = { A7 }
killes = { A1 / A4 }

© 2020 Ca}t Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

EXIT

Exampte 9.12 - building off fiqure 9.13

OUT[ENTRY] =
for (each basic bLoclz B other than ENTRY) { OUT[BJ }

while (changes to any OUT occurs) { |
for (each basic block B other than ENTQ‘)’) {

IN[B] = U? a Predecessor of B OUT[?]
OUTIB] = gene u (IN[B] - kills)

Represent di as a bit vector, where each d is a definition from 9.13
Union of sets A U B: A OR B Difference of sets A - B: A AND B

Compute in order Bl, B2, B3, B4, £XIT

ror axo\mpi.e:

IN[B2] = OUT[B1]t U OUT[B4]° = 111 0000 | 000 CCOC = 111 OO0

OUTIBR]: = gene u (IN[B2]t - kills:)
= 000 1100 + (111 0000 - 110 0001)
= 000 1100 + 0O0O] 0000 = 001 1ll00

© 2020 Carl Alphonce - Reproduckiov\ of this material is prohibi&ed without the author's consent

Example 9.12 - building off figure 2.13

OUT[ENTRY] = o
for (each basic block B obher than ENTRY) { OUTDB] = o }

while (changes to any oUT Qccu.rs) {
for (each basic block B other than ENTQ‘)’) {

IN[B] = U? a Predecessor of B OUT[?]
oUT[R] = gens U (IN[B] - kills)

© 2026 C;arLVALPhonce = Reproduckiou of this material is Prohibi&ed without the author's consent

Exampte 9.12 | i 0 e 3

dl: i =2 m -
OUT[ENTRY] = @ R
for (each basic block B other than ENTRY) { ODT[B] = o } e |
while (changes to any OUT occurs) | i by e M;“i 0 i

=NF i foe :

for (each basic block B other than ENTRY) {

IN{B] = UP a predecessor of B OUT[?] =
OUT[B] = gens u (IN[B] - kills) ey @
} : | d7: L = u3 |
} L E%T '}

IN[R1] = pred(Bl) = ENTRY
OUTIR1] = gemer u { IN[B1] - kills:)
gens: = | d1, d2, 43 }

kille: = { d4, 45, 46, 47 |

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Exampte 9.12 | i 0 e 5

dl: i = m -
OUT[ENTRY] = o ST
for (each basic block B other than ENTRY) { OUT[B] = 2 } e’ |
while (changes to any OUT occurs) | i S Mj-*: 0 i

=NF i foe :

for (each basic block B other than ENTRY) {

IN{B] = UP a predecessor of B OUT{‘P] .
OUT[B] = gene v (IN[B] - kills) e
} . | d7: L = u3 |
} i E%T «.»3

IN[R2] = Frec’&(BZ) = QUT[R1] u CUT[R4]
OUT{‘BRJ = gensz U C INEBZJ - keillsy)
geng: = { A4, 48 }

killez = { 41, 42, 47 }

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Exampte 9.12 | i 0 e 5

dl: i =2m -1

OUT[ENTRY] = @ S
for (each basic block B other than ENTRY) { OUT[B] } B

while (changes to any OUT occurs) { o Lt LR
for (each basic block B other than ENTRY) { ds:j=j-1 1§
IN{B] = UP a predecessor of B OUT{‘P] . l
OUT[B] = gens u (IN[B] - Kills) R
} d7: L = u3 o
} L E%T «.»3

IN[B3] = [are.d(.BS) = QUT[®2]
OUT[B3] = genesz u { IN[B3] - killes)
9@.&\33 — { d& }
killez = { 43 }

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Exampte 9.12 | i 0 e 5

dl: i =2m -1

OUT[ENTRY] = @ S
for (each basic block B other than ENTRY) { OUT[B] o1 arlats o1

while (changes to any OUT occurs) { o B2
for (each basic block B other than ENTRY) {

d4: =L+ 1
dS:j:J-l :

IN{B] = UP a predecessor of B OUT{‘PJ |
OUTIB] = genes v (IN[B] - kills) e
} d7: i = u3 i
} i E%T 4T

genss = { A7 }
killegs = { A1 5 A4 }

IN[B4] = OUT[R2] v OUT[B3]
OUT{B"P] = S@.V\BA,. U (IN[B4’] - RLLLBA,.)

© 2020 Carl Alphonce - Reproduction of this material is prok ibited without the author's consent

Example 9.12 it el

dl: i =2m -1

OUT[ENTRY] = e
for (each basic bi.oclx B other than ENTRY) { OUT[B] > e |
while (changes to any OUT occurs) | i M;“_Lt G i
for (each basic block B other than ENTRY) { ds:j=j-1 §
IN[B] = UP o predecessor of 8 OUTLP]
oUT[B] = gens U (IN[B] - Kkills)

B4

IN[EXIT] = OUT[R4]
OUTLEXIT] = IN[EXIT]

© 2020 Carl Alphonce - Reproduction of this material is prokubu&ed withouk. the aubhor's consent

! ENTRY i

OUTLENTRY] = e e

for (each basic bi.oclx B other than ENTRY) { OUT[B] > oy

while (changes to any OUT occurs) { v b dé—:uit 5
for (each basic block B obther than ENTRY) { ds:j=j-1 |

IN[B] = U? a predecessor of B OUT{‘PJ
OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY !

dl: i =2m -1

OUTLENTRY] = S
for (each basic bi.ock B other than ENTRY) { OUTITB] > oy
while (changes to any OUT occurs) { e) | 55 _Lt 5
for (each basic block B obther than ENTRY) { ds:j=j-1 |
IN[B] = UP a predecessor of 8 OUTLP]

OUTIB] = gens u (IN[B] - kills)

.a WA

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY |

dl: i =2m -1

OUT[ENTRY] = e

for (each basic bi.ock B other than ENTRY) { OUTDBJ > e

while (changes to any OUT occurs) | i o _Lt o

for (each basic block B obther than ENTRY) { ds:j=j-1 {
IN[B] = UP a predecessor of 8 OUT[P]

OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY |

OUT[ENTRY] = e e

for (each basic bi.ocla B other than ENTRY) { OUTUB] o } e

while (changes to any OUT occurs) | ' ' o it o
for (each basic block B other than ENTRY) { ds:j=j-1 {

IN{BJ = UP a predecessor of B OUT[PJ |
OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

! ENTRY |

OUT[ENTRY] = e e

for (each basic btocw B other than ENTRY) { ODTDB] o } e

while (changes to any OUT occurs) | ' ' o it o
for (each basic block B other than ENTRY) { ds:j=j-1 {

IN[-BJ = UP a predecessor of B OUT[PJ |
OUTIB] = gens u (IN[B] - kills)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

92.4 Reaching definitions

Useful for constant propagation and constant
folding (§%.5.4 - p. 36, §9.4 - p. 6£32).
Additional discussion and examptes:

enwikipedia.org/wiki/Constant_folding

Useful for global common subexpression
elimination (€92.1.4 - p. ¥%, §9.2.6 - p. 610, §9.5 -
p. 639). Additional discussion and examples:

enwikipedia.org/wiki/Common_subexpression_elimination

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's co

senk

https://en.wikipedia.org/wiki/Constant_folding
https://en.wikipedia.org/wiki/Common_subexpression_elimination

9.2.5 Live variable amatvsis

Useful for effective register management.

"After a value is computed in a register, and
presumably used within a block, it is not
necessary to store that value i ik is dead ak
the end of the block, Also, if all registers are
full and we need anocther reqister, we should
favor using a reqister with a dead value, since
that value does not have to be stored.” [p. 60%]

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

9.2.5 Live variable amatvsis

"In Live variable analysis we wish to know for
variable x and point p whether the value of x
at p could be used along some path in the
flow graph starting ok p. If so, we say x is
live at p; otherwise, x is dead at p." [p. Lo¥]

In contrast to reaching analysis, which used
a forward bransfer function, live variable
analysis uses a backward kransfer function.,

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consenl

9.2.8 Live variable analysis
definitions, page 609

defs is "the set of variables defined in
B prior to any use of that variable in
B"

uses is "the set of variables whose
values may be used in B prior to any
definition of the variable”

9.2.8 Live variable amaivsis
definitions, page 609

IN[EXIT] = 2
IN[B] = uses u (OUT[B] - defs)

OUTDB:] — U S a successor of B IN{S]

9.2.5 Live variable amatvsis

Algorithm {p« &10]
INPUT: A flow graph with def and use compuled for each block.

CUTPUT: IN[B] and OUT[R], the set of variables Live on ev\%rj
and exit of each block of the flow graph.

METHOD:
IN[EXIT] = ©
for (each basic block B other than £XIT) { IN[B] = 2 }
while (changes to any IN occur) {
for (each basic block B other than EXIT) {

OUTIB] = Us. ccccssorof e IN[S]
IN[B] = uses u (OUT[R] - defs)

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

9.2.6 Available expressions

"An expression x+y is available at a
point p i every path from the entry
node to p evaluates to x+y, and after
the last such evaluation prior to
reaching p, there are no subsequent
assignments to x or y." [p. &10]

9.2.6 Available expressions

"...a block lills expression x+y if ik
assigns (or may assign) x or y and
does not subsequently recompute x+y."
[p. 610]

"A block generobes expression x+y if it
d@fm&&etv evaluates x+y and does not
subsequﬁmﬁv define x or Y. [p. 611]

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

no
assighment
to ©

"It will be available if ©
is not assigned a new
value in blocik B2, ..." ['
611]

Here 4 * L in B3 can be
replaced by value of E1,
reqardless of which
branch is taken.,

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's co

sent

Again, 4 * L in B3 can be
replaced by value of t1,
reqardless of which
branch is taken
(since k1 cowntains the
correct value of 4 * { in
bobth cases)

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

9.2.6 Available expressions

Infor mally:

"If ab point p set S of expressions is available,
and q is the point after p, with statement
X=Ytz. between them, thein we form the set of
expressions available at 9 b"j the following
steps:
1. Add to § the expression y+z.
2. Delete from S any expression tvolving
variable x.”
Lp. 611]

© 2020 Carl Alphonce - Reproduction of this material is prohi

s(J‘._\ B o o K : | o X s b B g ’ .
S AL VI e AL o VLA L& .Y 22075 S H@1% %o

Ou;‘ub"‘ﬁ

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

9.2.6 Available expressions

"We can find available expressions in a manner
reminiscent of the way reaching definitions are
ﬂompu%@.dﬂ Suppose U is the 'universal set of all
expressions appearing on the right of one or more
statement of the program. For each block B, let
IN[B] be the set of expressions in U that are
available ot the point just before the beginning of
B. Let OUT[B] be the same for the point following
the end of B. Define e_gens to be the expressions
generated by B and e_kills to be the set of
expressions in U killed tn B, Note that IN, OUT,
e._qgen, and e_kill can all be represemﬁed bv bik
vectors." [p. 612]

© 2020 Carl Alphonce - Reproduction of this material is proktbi&ed without the author's consent

9.2.6 Available expressions
definitions, page 612

OUT[ENTRY] = @

OUT{B] = e _qgens n (INEB] = Qmw’ﬁi.i,@)

IN[B] = ;. s ilin OUT 7.

9.2.6 Available expressmms
cieﬂfm&mns, Fmge 612

OUTTENTRY] = 2
OUTIR] = e_gens n (IN[B] - e_kills)
IN{B] — n?apredecessor of B OUT{?] o

Note use of [N rather than U,
is available at the beginning of

thockout,lfuuanutbhd&hmdofm
decessors.” [p. 612]

9.2.6 Available expressions

Algorithm [p. 614]

INPUT: A flow graph with e_kills and e_gens computed for cach
block B, The initial block is B1.

OUTPUT: IN[B] and OUT[R], the set of expressions available ot the
entry and exit of each block of the flow graph.

METHOD:
CUTL[ENTRY] = ©
for (each basic block B other than ENTRY) { 0UT[B] = U |
while (changes to any OUT occur) |
for (each basic block B other than £XIT) {

IN{B] - n‘? a predecessor of B OUT[—PJ
OUTIR] = e_qgens n (IN[B] - e_Nills)

¥ © 2020 Carl Alphonce - Reproduction of this material is Prokibi&ed without the author's consent

9.2.6 Available expressmms

Algorithm [p. 614]

INPUT: A flow grapk with e_kills and e_gens compu&ed for each
block B, The initial block is B1.

OUTPUT: IN[B] and OUT[R], the set of expressions available at the
entry and exit of each block of the flow graph.

METHOD:
CUTL[ENTRY] = ©
for (each basic block B obher than ENTRY) { OUT[R] = 0 }
while (changes to any OUT occur) | :
for (each basic block B other than EXIT) {

IN[—B] — n? a predeaesscr of B OUT{‘P]
oUT[B] = e_gens N (IN[B] - e_kills)

} © 2020 Carl Alphonce - Reproduction of this makeritt™ e |

9.2 Summarfj

DAoL

Dire Lol

g | ST
I roansSTeY

A CELOWV

LYel¥1% lé\l,s T

- o‘p_yj;molﬂ (>

ry LS -
LALCELOLLZE

Leaching Aetiittlons

sebs of definitions

seks of variables

N 3 ‘\ v e N 4 o o3 .
AVaLLalZle exXpre
.

sets of expressions

forward

backward

forward

SQV\B U (X = R‘Lu.[3>

wses U (X o d?-‘FB>

_emgé.hg ﬂ (x pe QNR‘E’.LB>

OUT[ENTRY] = &

IN[EXIT] = O

OUTIENTRY] = &

U

U

N

0UTIR] = f=(IN[B])
IN{BJ = /\‘P,Pred(B)OUT[?J

IN[R] = $:(0UT[RD])
QUT{B] = /\S,succ(B)IN{SJ

oUTIB] = £(IN[B])
IN[B] = /\‘P,Pred(B)QUT[?J

oUTI[R] = O

IN[R] = O

oUTI[R] = U

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

