

The 𝛼 programming language

Carl Alphonce
Revised 2024-04-01

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 2

This document describes the 𝛼 programming language, a high-level programming language which serves as
the basis for the compiler project in the University at Buffalo course CSE443 Compilers.

Toolchain requirements

1. Tools:
a. flex: /usr/bin/flex (2.6.4)
b. bison: /util/bin/bison (3.8.2)
c. C: /usr/bin/gcc (9.4.0)

2. Execution environment:

a. cerf.cse.buffalo.edu
b. turing.cse.buffalo.edu

Toolchain recommendations

3. Editor
a. emacs (29.1 or later)

The description of the 𝛼 programming language has undergone significant changes for spring 2024 to
streamline the language. While the changes have been carefully considered and reviewed it is possible that
further clarifications are needed. Please don’t hesitate to ask on Piazza if you find something incongruous
in this document.

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 3

SECTION 1: Lexical structure

The lexical structure of the language is defined (informally) below.

Parentheses are used for grouping, the pipe '|' for alternation. For example, ('e' | 'E') means either the lower
case letter 'e' or the upper case letter 'E' (but not both).

'?' indicates optionality (zero or one occurrence). For example, ('+'|'-')? means either the plus sign '+' or the
minus sign '-' can appear, but neither is required.

'+' indicates one or more occurrence. For example, digit+ means one or more digits (where digit is defined
as '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9')

Section 1.1: Specifications

Legal identifiers must begin with an upper or lower case letter or '_', followed by an arbitrarily long string of
upper or lower case letters, '_', and digits.

The language has five built-in types, the first four primitive and the last composite. Literal values for each
type are described. Note that numeric literals cannot be negative.

integer – 32-bit wide two's complement numbers: digit+

 address – a 64-bit wide memory address or null. null is the only literal value.

Boolean – the two values true and false

character – 8-bit wide 7-bit ASCII characters: literals are characters in single quotes, e.g. 'a' or one
of the following '\'-escaped characters: '\n' (newline), '\t' (tab), '\'' (single quote), and '\\'
(backslash).

string – a sequence of values of type character, of arbitrary length, enclosed in double quotes, but
not spanning more than one line. The double-quote character must be '\'-escaped in string literals,
whereas the single-quote character is not, as shown in this example:

 "I'd think this is a legal \"string\" that contains \n \t several escaped characters, isn't it?"

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 4

Keywords (all keywords are reserved):
the names of the primitive types (given above), and
true
false
null
while
if
then
else
type
function
return
external
as

Punctuation:

Parentheses: ()
Brackets: []
Braces: { }
Other punctuation: ; : , -> " \

Operators:
 Arithmetic operators: + - * / %

Relational operators: < =
Assignment operator: :=
Logical operators: ! & |
Member access (dot) operator: .

Whitespace and comments:
 space, tab, newline
 comments are delimited by (* and *)

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 5

Section 1.2: Standard token constants
To standardize the output from every team's lexer, use the following constants to represent your tokens:

// identifier
ID 101

// type names
T_INTEGER 201
T_ADDRESS 202
T_BOOLEAN 203
T_CHARACTER 204
T_STRING 205

// constants (literals)
C_INTEGER 301
C_NULL 302
C_CHARACTER 303
C_STRING 304
C_TRUE 305
C_FALSE 306

// other keywords
WHILE 401
IF 402
THEN 403
ELSE 404
TYPE 405
FUNCTION 406
RETURN 407
EXTERNAL 408
AS 409

// punctuation - grouping
L_PAREN 501
R_PAREN 502
L_BRACKET 503
R_BRACKET 504
L_BRACE 505
R_BRACE 506

// punctuation - other
SEMI_COLON 507
COLON 508
COMMA 509
ARROW 510

// operators
ADD 601
SUB_OR_NEG 602
MUL 603
DIV 604
REM 605
LESS_THAN 606
EQUAL_TO 607
ASSIGN 608
NOT 609
AND 610
OR 611
DOT 612
RESERVE 613
RELEASE 614

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 6

SECTION 2: Syntactic structure

The language is defined (informally) as follows; part of your job is to define a reasonable formal grammar that you
can use with Flex and Bison to parse/compile programs written in the language. Keywords appear in bold.

(X) means zero or one occurrence of X
X|Y means one occurrence of either X or Y
{X}+ means one or more occurrences of X
{X}* means zero or more occurrences of X

Section 2.1: Productions

program is:

 prototype-or-definition-list A function named entry must be
 defined to generate an executable
 (see sample program below).
prototype-or-definition-list is:

 prototype prototype-or-definition-list At least one prototype or definition is required.
 In order to create an executable file the function
 definition prototype-or-definition-list entry must be defined.

 prototype

 definition

prototype is: Function prototype (i.e. a function declaration)

 (external) function identifier1 ‘:’ identifier2 identifier1 is function name,

identifier2 is function type
external communicates to the compiler that this
function is user-defined, but is defined in another file
rather than this one. It will be compiled separately and
must be linked in to produce a valid executable.

definition is: Defines a new type or function

 type identifier ‘:’ dblock Record type.

identifier is name of the record type

 type identifier1 ‘:’ constant ‘->’ identifier2 Mapping (array) type.

identifier1 is name of the array type
constant: an integer, the number of dimensions
 (note: not the SIZE of those dimensions)
identifier2 is name of element type

 type identifier1 ‘:’ identifier2 ‘->’ identifier3 Mapping (function) type.

identifier1 is name of the function type

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 7

identifier2 is name of the domain type
Identifier3 is name of the range type

 identifier parameter assignOp sblock Function definition

identifier is function name

parameter is the name of the parameter,
possibly elaborated by an ‘as’ clause

sblock is function body

parameter is: Every function has exactly one parameter.
 To name that parameter enclose an identifier
 ‘(‘ identifier ‘)’ in parentheses. If the parameter is a record
 type names can be associated with the record
 as ‘(‘ idlist ‘)‘ elements using an as clause.

idlist is:

identifier ‘,’ idlist

 identifier

sblock is:

‘{’ (dblock) statement-list ‘}’ sblock allows local declarations in optional dblock
 Scope of the sblock starts at the ‘{‘. This determines
 the scope number for the symbol table output.

dblock is:

 ‘[’ declaration-list ‘]’

declaration-list is:

 declaration ‘;’ declaration-list

declaration

declaration is:

 identifier ‘:’ identifier LHS is type, RHS is a variable name

statement-list is:

compound-statement statement-list while(…) { } x := y ;

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 8

compound-statement while(…) { }

simple-statement ';' statement-list x := y ; while(…) { }

simple-statement ';' x := y ; or return exp ;

compound-statement is: Ends with a '}'

while ‘(’ expression ‘)’ sblock Boolean expression

if ‘(’ expression ‘)’ then sblock else sblock Boolean expression, else is required

sblock Nested block & therefore nested scope

simple-statement is: Does not end with '}'

assignable assignOp expression

return expression

assignable is:

 identifier Variable (could be name of function)

assignable ablock Function call or array access.

Can be assigned to only as an array access.

Size of ablock must match number of array dimensions
(for array access) or number of parameters (for function
call – more discussion below).

For array access each member of ablock must be an
integer, an in-bounds array index.

For function call each member of ablock must be of the
correct type, as determined by function's domain type.

Recall that technically every function has exactly one
parameter. However, if the parameter is of a record type
and the function was defined with the as clause then a
call with multiple apparent arguments is permitted. In
this case the (implicit) record will be represented on the
stack rather than indirectly on the heap.

When used as an r-value the type is the assignable’s
range type

Pass-by-value, as in Java (i.e. value could be an address).

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 9

 assignable recOp identifier Record access, or array dimension lookup

Accessing the size of each array dimension: if a is an n-
dimensional array, allow a to be used in a record access
construct as well: a._1 through a._n give access to the
sizes of each of the n dimensions. Taking a concrete
example, if foo is a 3-dimensional array of character and
we reserve foo(5,4,7), then foo._1 has value 5, foo._2 has
value 4, and foo._3 has value 7. The size of each
dimension is determined dynamically (at runtime).

a._0 denotes the number of dimensions of the array.
Thus, foo._0 is 3. This is determined at compile time by
the definition of the array's type.

expression is: Recall: an expression has a value.

 constant Literal, e.g. 17, true, false, null, “foo”.

UnaryOperator expression

assignable

expression binaryOperator expression

‘(‘ expression ‘)’ Parenthesized expression.

memOp assignable Value is pointer to memory block, or null

ablock is:

 ‘(’ argument-list ‘)’ ablock must have parentheses.

argument-list is:

expression ‘,’ argument-list

expression

UnaryOperator is:

 - Unary numeric negative.

 ! Logical negation.

memOp is:

 reserve Allocates space for type object.

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 10

 release Releases space for type object.

ASIDE: RESERVE & RELEASE IN EXPLICIT & IMPLICIT ASSIGNMENTS
Suppose 'arr' refers to a one-dimensional array of records. arr := reserve arr(10) reserves
space for an array with 10 elements; the value assigned to arr is a pointer to the allocated
block of memory. arr(1) := reserve arr(1) reserves space for a record; the value assigned
to arr(1) is a pointer to the allocated block of memory.

How do we determine whether reserve arr(x) allocates space for an array with x elements
or for the type of value that can be stored in location arr(x)? In other words, how can the
compiler determine whether x refers to a quantity or an index? The disambiguation
comes from the expected type imposed by the LHS of the assignment. In the first case we
are assigning to arr (a pointer to an array), in the latter to arr(x) (a pointer to an array
element, in this case a record). The types of these expressions are different, and must be
propagated as the 'expected type' for the RHS expression.

The same applies in a function call: f(reserve arr(x)). Recall that there is an implicit
assignment from each argument in a function call to the corresponding parameter in the
parameter list.

Assume that 'release exp' always returns the null pointer. There is no ambiguity with
release similar to that for reserve. release arr would release the memory pointed to by arr
(i.e. the memory occupied by the array), whereas release arr(1) would release the memory
pointed to by arr(1), under the assumption of course that arr(1) was a pointer type.

assignOp is:

:= Assignment.

recOp is:

. Record access.

binaryOperator is: Usual prec/assoc rules apply.

 +

-

*

/

 %

 & Logical AND, short circuiting.

 | Logical OR, short circuiting.

 < Relational operators: less than

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 11

 defined for numeric types: i*i->b, c*c->b (numeric ‘<’)
 defined for Boolean: b*b->b (false<true)

 = Relational operator: equal to

Defined for all types t: t*t->b

Section 2.2: Precedence/Associativity table (from highest precedence to lowest precedence)

OPERATOR DESCRIPTION ASSOCIATIVITY
reserve, release Memory allocation N/A (unary)
. Record access N/A (unary)
- Unary N/A (unary)
! Logical negation N/A (unary)
*, /, % Binary left-to-right
+, - Binary left-to-right
< left-to-right
= Equality left-to-right
& left-to-right
| left-to-right
:= Assignment N/A (cannot be part of expression)

Parenthesized expressions have highest priority.

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 12

SECTION 3: Type checking and semantics

Type checking must occur as appropriate, including (but not necessarily limited to) the following
constructions.

In the following, the expression must be of type Boolean:

while ‘(‘ expression ’)’ sblock
if ‘(‘ expression ’)’ then sblock else sblock

 ! expression

In the following, the expression or assignable must be a type allocated on the heap. Records and arrays are
allocated space on the heap. Nothing else is explicitly allocated space on the heap. 'reserve' allocates space
on the heap. 'release' frees space previously allocated on the heap. In ‘reserve’, if the assignable is an array,
the size of each dimension must be given, as in reserve arr(7,4), which reserves space for a 7 by 4 array of
elements according to the declaration of arr.

 reserve assignable
 release assignable

In the following, exp1 and exp2 must be of the same type. exp1 must be assignable. If the assignment
occurs inside a function body and exp1 is the name of the function, then the type of exp1 and exp2 must be
the same as the return type of the function (the effect is that of a return statement in C or Java).

exp1 := exp2

In the following, exp1 must be a record type:

exp1 . exp2

except in the special case where exp1 is an array type and exp2 is of the form _0, _1, etc (as described in the
milestone 2 document for the rule assignable is assignable recOp identifier (pages 3 and 4).

In the following, the expression must be integer:

- expression

In the following, exp1 and exp2 must both be integer:

 exp1 + exp2
 exp1 – exp2
 exp1 * exp2
 exp1 / exp2

exp1 % exp2

In the following, exp1 and exp2 can be of any of the types integer, Boolean, or character, as long as exp1 and
exp2 have the same type:

 exp1 < exp2

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 13

In the following, exp1 and exp2 can be of any type, under the following constraints: (1) either exp1 and exp2
have the same type, or (2) if one is the constant null, then the other may be of an array type, a record type,
or a function type:

exp1 = exp2

In the following, exp1 and exp2 must be both be Boolean:

 exp1 & exp2
 exp1 | exp2

In the following, if assignable refers to a function, then the number, type and order of expressions in ablock
must be identical to that given in the function's domain type (see discussion below for one special case). If,
on the other hand, assignable refers to an array, then ablock must have the number of integer expressions
given by the constant in the array's type.

assignable ablock

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 14

SECTION 4: Intermediate code generation

Use the intermediate representation instructions given in section 6.2.1 of the text, on pages 364-365. Your
team may choose whichever internal representation it wishes.

Review 6.3.4 – 6.3.6. Generate intermediate code for programs processed by your compiler, under the
following assumptions:

integer – 32-bit wide two’s complement

character – 8-bit wide ASCII

Boolean – 8-bit wide

Array – fixed size, determined by initial allocation. The number of dimensions is determined by type
declaration and is known in the symbol table at compile time. For each dimension there is a 4-byte
block storing an integer denoting the size (number of elements) of that dimension. Your team must
decide whether to use row-major or column major order. Arrays are zero-indexed (lowest index is
always 0). See 6.4.3 – 6.4.4.

String – a one-dimensional array of character. In other words, of a fixed size, determined by initial
allocation. The first 4-byte block stores the size (number of characters) as an integer. Elements of
string (values of type character) are stored in consecutive bytes. String literals are a shorthand way of
creating an array of characters.

Record – fixed size, determined by sizes of its constituent elements and alignment requirements.

Assume the size of a pointer is 64 bits. Arrays and records are allocated in the heap using reserve,
and are therefore accessed indirectly via a pointer.

Assume our binary Boolean operators are short-circuiting. Generate code for flow-of-control statements
(for, while, if-then-else, and switch). See 6.6 – 6.8. The semantics for flow-of-control statements is typical
(we will review in class).

Generate code for bounds-check array access. We will discuss in detail how arrays are laid out in memory,
but the size of each dimension of an array is stored as part of its in-memory representation and can be used
to ensure that each array access uses an in-range index.

Generate code for function definitions and function calls as outlined in section 6.9. Note that every function
technically takes exactly one argument and returns exactly one value. In addition to the normal function
definition syntax we will support a special syntax for a function whose domain type is a record with more
than one member, to give the illusion of a function of multiple parameters.

For example,

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 15

type rec: [integer: x; integer: y]
type T1: integer -> integer
type T2: rec -> integer

function foo : T1
function bar1 : T2
function bar2 : T2

foo(x) := {
 return x * x;
}

bar1(a) := {
 return a.x * a.y;
}

bar2 as (r,s) := {
 return r * s;
}

entry(arg) := {
 [integer: result ; rec: w]
 result := foo(5);

 w := reserve(w); (* see types.alpha – reserve returns a value of type address,
 which can be assigned to array and record variables
 *)
 w.x := 5;
 w.y := 7;

 result := bar1(w); (* pass w (a rec type value) to bar1 *)
 result := bar2(5,7); (* implicitly build a rec type value, assign 5 and 7 to fields x and y, but call them r and s *)

 return 0;
}

Standard operators have expected semantics:

unary: -, !
binary: +, -, *, /, %, &, |, <, =, := (use ‘==’ as the three address code translation of ‘=’,

and ‘=’ as the three address code translation of ‘:=’)

Special operators: assume that they are defined:

 Unary: reserve, release

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 16

SECTION 5: Assembly code generation

The compiler must generate x86-64 assembly language instructions that preserve the semantics of the
original source program. We will use a restricted subset of the available ISA. Information about the subset
as well as general x86-64 resources are provided on the course website.

The expectation is that your compiler will:

a) generate assembly code that preserves semantics of source code program,
b) perform appropriate register allocation and assignment, and
c) possibly perform some simple optimizations, depending on what we have time to cover in lecture.

You must develop a test suite of programs to verify the correctness of your code generation.

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 17

APPENDIX A: The 𝜶 library
The 𝛼 programming language has a small library of functions that interface with functions in the C libraries.
These functions provide very basic printing and memory allocation/freeing capabilities:

external function printInteger: integer2integer
external function printCharacter: character2integer
external function printBoolean: Boolean2integer

external function reserve: integer2address
external function release: address2integer

These functions, along with the standard entry function,

function entry: string2integer

are declared, and several useful types are defined, in a file named library.alpha.

This file should be included in any alpha code file by using the C macro preprocessor. The C macro
preprocessor (cpp, also invoked as gcc -E) will process #include directives in 𝛼 source code files. For more
information on cpp see https://gcc.gnu.org/onlinedocs/cpp/

Before compiling an alpha file with a #include you must first run the preprocessor. Here is an example of
how to run the preprocessor on a file named simple.alpha:

 cpp -P -x c -o simple.cpp.alpha simple.alpha

This command write the output of the preprocessor to the file simple.cpp.alpha, which will contain pure
alpha code.

Example

Suppose simple.alpha contains

#include "library.alpha"

entry(arg) := {
 return 0;
}

and library.alpha contains

(* At compiler start-up your program should create symbol table entries for the four primitive types:
 Boolean (1 byte)
 character (1 byte)
 integer (4 bytes)
 address (8 bytes)
 You should #include this file at the start of your alpha file.
 Some useful types are defined below.
*)

type string: 1 -> character

type BooleanXBoolean: [Boolean: x, y]
type characterXcharacter: [character: x, y]
type integerXinteger: [integer: x, y]

https://gcc.gnu.org/onlinedocs/cpp/

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 18

type Boolean2Boolean: Boolean -> Boolean
type integer2integer: integer -> integer

type character2integer: character -> integer
type Boolean2integer: Boolean -> integer
type string2integer: string -> integer

type integerXinteger2integer: integerXinteger -> integer
type integerXinteger2Boolean: integerXinteger -> Boolean
type characterXcharacter2Boolean: characterXcharacter -> Boolean
type BooleanXBoolean2Boolean: BooleanXBoolean -> Boolean

type integer2address: integer -> address
type address2integer: address -> integer

external function printInteger: integer2integer
external function printCharacter: character2integer
external function printBoolean: Boolean2integer
external function reserve: integer2address
external function release: address2integer

function entry: string2integer

After running the preprocessor with the command shown above the file simple.cpp.alpha will be
created with the following contents:

(* At compiler start-up your program should create symbol table entries for the four primitive types:
 Boolean (1 byte)
 character (1 byte)
 integer (4 bytes)
 address (8 bytes)
 You should #include this file at the start of your alpha file.
 Some useful types are defined below.
*)
type string: 1 -> character
type BooleanXBoolean: [Boolean: x, y]
type characterXcharacter: [character: x, y]
type integerXinteger: [integer: x, y]
type Boolean2Boolean: Boolean -> Boolean
type integer2integer: integer -> integer
type character2integer: character -> integer
type Boolean2integer: Boolean -> integer
type string2integer: string -> integer
type integerXinteger2integer: integerXinteger -> integer
type integerXinteger2Boolean: integerXinteger -> Boolean
type characterXcharacter2Boolean: characterXcharacter -> Boolean
type BooleanXBoolean2Boolean: BooleanXBoolean -> Boolean
type integer2address: integer -> address
type address2integer: address -> integer
external function printInteger: integer2integer
external function printCharacter: character2integer
external function printBoolean: Boolean2integer
external function reserve: integer2address
external function release: address2integer
function entry: string2integer
entry(arg) := {
 return 0;
}

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 19

APPENDIX B: Compiler invocation

Section B.1: Making the compiler

Put all necessary code into a zip file. Include a makefile named ‘Makefile’, which has at least two targets:
compiler and clean. To make the current up-to-date compiler:

make compiler

To remove any files generated by make compiler, invoke make clean

Section B.2: Command-line Arguments

Your executable must accept the command-line arguments indicated in the output below, which must itself
be produced when the compiler is invoked with the 'help' command-line argument (where '%' is the OS
prompt and './alpha -help' is the compiler invocation):

% ./alpha -help
HELP:
How to run the alpha compiler:
./alpha [options] program
Valid options:
-tok output the token number, token, line number, and column number for each of the tokens to the .tok file
-st output the symbol table for the program to the .st file
-asc output the annotated source code for the program to the .asc file, including syntax errors
-tc run the type checker and report type errors to the .asc file
-ir run the intermediate representation generator, writing output to the .ir file
-cg run the (x86 assembly) code generator, writing output to the .s file
-debug produce debugging messages to stderr
-help print this message and exit the alpha compiler

For example, suppose that prog1.alpha is an input file, then running

% ./alpha -tok prog1.alpha

must produce output in a file named prog1.tok

Similarly, if prog2.alpha is an input file, then running

% ./alpha -tok prog2.alpha

must produce output in a file named prog2.tok

Invoking with other command-line flags must trigger the indicated behavior. For example,

./alpha -tok -st -asc prog.alpha

must produce the token, Annotated Source Code, and Symbol Table files for prog. The order of flags is
irrelelvant, so the above invocation is equivalent to this:

./alpha -asc -st -tok prog.alpha

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 20

Section B.3: The compiler flags in detail

Assume alpha is the name of your compiler, and that prog.alpha contains :

(* Type definitions *)
type string: 1 -> character
type int2int: integer -> integer
type string2int: string -> integer

(* Function prototypes
 They use the above type definitions
*)
function square : int2int
function entry : string2int

(* Function definition
 Functions must be declared before they are defined
*)
square(x) := {
 return x * x;
}

(* Function definition
 entry is the first function called
*)
entry(arg) := {
 [integer: input; integer: expected; integer: actual; boolean: result; string: input]
 input = 7;
 expected = 49;
 actual := square(input);
 rseult := expected = actual;
 return 0;
}

Section B.3.1: the -tok option / token stream

The lexer component of your compiler must write (to a file as indicated below) the numeric value
representing each token in the input file, a space, the text that matched the token, a space, the starting line
number of the token, a space, the starting column number of the token, followed by a new line character,
using code along these lines:

fprintf(FILE_tok, "%d %d %3d \"%s\"\n", lineNumber, columnNumber, token, text)

Your lexer must also recognize and print to the output file but not return to the parser, the following
pseudo-token for comments:

// comments
COMMENT 700

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 21

Section B.3.2: the -st option / symbol table

Invoking

./alpha -st prog
must lex and parse the contents of prog and produce a symbol table description to the file prog.st

The symbol table must be written to the file in the following format (this example does not show all pre-
loaded types):

NAME : SCOPE : PARENT : TYPE : Extra annotation

-----------------:--------:--------:----------------------:-----------------------------

Boolean : 001001 : : primitive : type

character : 001001 : : primitive : type

integer : 001001 : : primitive : type

string : 001001 : : 1 -> character : type

int2int : 001001 : : integer -> integer : type

string2int : 001001 : : string -> integer : type

square : 001001 : : int2int : function

entry : 001001 : : string2int : function

-----------------:--------:--------:----------------------:-----------------------------

x : 014014 : 001001 : integer : parameter (of square)

-----------------:--------:--------:----------------------:-----------------------------

arg : 021015 : 001001 : string : parameter (of entry)

input : 021015 : 001001 : integer : local

expected : 021015 : 001001 : integer : local

actual : 021015 : 001001 : integer : local

result : 021015 : 001001 : $_undefined_type : local

-----------------:--------:--------:----------------------:-----------------------------

Each scope is identified by the line number and column number where it begins. The global scope is always
001001. Each scope aside from scope 001001 has a parent scope (indicated in the PARENT column above).

The extra annotation ‘type’ means that the identifier being introduced (such as string2int) is the name of a
type. string -> integer is a function type, mapping a string to an integer.

The extra annotation ‘parameter (of name)’ means that the identifier being introduced (such as x) is the name
of a parameter for the named function.

The 'extra annotation' indicates
the kind of declaration, along
with other useful information.

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 22

The extra annotation ‘function’ means that the identifier being introduced (such as square) is the name of a
function.

The extra annotation ‘local’ means that the identifier being introduced (such as input) is the name of a local
variable.

$_undefined_type is a compiler-internal type name used as the type of any expression with an undefined
type. Note that as it starts with ‘$’ it cannot conflict with any user-defined type.

Section B.3.3: the -asc option / annotated source code

Invoking

./alpha -asc prog.alpha
should lex and parse the contents of prog and produce annotated source code to the file prog.asc

In this case the source code listing contained in prog.asc should be:

001: (* Type definitions *)
002: type int2int: integer -> integer
003: type string2int: string -> integer
004:
005: (* Function prototypes
006: They use the above type definitions
007: *)
008: function square : int2int
009: function entry : string2int
010:
011: (* Function definition
012: Functions must be declared before they are defined
013: *)
014: square(x) := {
015: return x * x;
016: }
017:
018: (* Function definition
019: entry is the first function called
020: *)
021: entry(arg) := {
022: [integer: input; integer: expected; integer: actual; boolean: result; string: input]
LINE 022:51 ** ERROR: the name 'boolean', used here as a type, has not been declared at this point in the program.
LINE 022:60 ** ERROR: the name 'result' is not declared with a valid type
LINE 022:74 ** ERROR: the name 'input' has already declared at this point in the program
023: actual := square(input);
024: rseult := expected = actual;
LINE 024:3 ** ERROR: the name 'rseult', used here as a variable name, has not been declared at this point in the program.
025: return 0;
026: }

Each line begins with a zero-padded three-digit line number, a colon, and a space.

Error messages should all begin with “LINE lineNumber:columnNumber ** ERROR:”, and then give a description
of what the error was. The description of the error need not be exactly as shown (you should come up with
messages that are as meaningful as you can make them, without being overly wordy).

In this example type checking is not turned
on.

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 23

Your parser must produce error messages for errors identified by the LALR parse table, as well as
undeclared names identified by symbol table lookup, and type errors. There may be other errors that your
parser identifies, in which case they should be included in the parser output as well. The above is not
intended to be a definite statement of the parser's output, but an indication of the format expected. You may
use the standard syntax error messages that Bison produces, in addition to the name error messages shown in
the above sample output.

Section B.3.4: the -tc option / type checking

Invoking

./alpha -asc -tc prog.alpha
must report type errors in the ASC file. Invoking without the -asc flag would still perform type checking,
but type error would not be reported. If the -tc flag is not specified no type checking is done, and no type
errors are reported. Add actions to the rules of your grammar to perform type checking and report type
errors when they occur. You must craft meaningful type error messages.

Section B.3.5: the -ir option / intermediate representation

Add the –ir compiler option, to produce the intermediate representation of a program to a file with the
extension ‘.ir’. In the output produced you must use symbolic labels (regardless of what your compiler-
internal representation is).

Invoking

./alpha -ir prog.alpha
must write a representation of the compiler’s internal intermediate representation of a program the file
prog.ir

Section B.3.6: the -cg option / code generation

Add the –cg compiler option, to produce x86-64 assembly code of a program to a file with the extension ‘.s’.

Invoking

./alpha -cg prog.alpha
must write a representation of the x86-64 assembly representation of a program the file prog.s

Section B.3.7: the -debug option

Add the –debug compiler option. This option is intended to produce development-time debugging
messages inserted by and the for the use of the development team. Without this option specified NO
extraneous output may by produced.

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 24

Section B.3.8: the -help option

The following output must be produced when the compiler is invoked with the 'help' command-line
argument (where '%' is the OS prompt and './alpha -help' is the compiler invocation):

% ./alpha -help
HELP:
How to run the alpha compiler:
./alpha [options] program
Valid options:
-tok output the token number, token, line number, and column number for each of the tokens to the .tok file
-st output the symbol table for the program to the .st file
-asc output the annotated source code for the program to the .asc file, including syntax errors
-tc run the type checker and report type errors to the .asc file
-ir run the intermediate representation generator, writing output to the .ir file
-cg run the (x86 assembly) code generator, writing output to the .s file
-debug produce debugging messages to stderr
-help print this message and exit the alpha compiler

CSE443 – 𝛼 Language Specification (revised 2024-04-01) Spring 2024

©Carl Alphonce 2024 25

APPENDIX C: ADDITIONAL RESOURCES

Lexical Analysis with Flex (2.6.0)
https://epaperpress.com/lexandyacc/download/flex.pdf

Bison (3.8.1)
https://www.gnu.org/software/bison/manual/html_node/index.html

Though this refers to lex and yacc (rather than flex and bison) you might find the following on-line tutorial
helpful:

https://www.epaperpress.com/lexandyacc/download/LexAndYacc.pdf

Using as
https://sourceware.org/binutils/docs/as/

Stanford CS107 Guide to x86-64
https://web.stanford.edu/class/archive/cs/cs107/cs107.1194/guide/x86-64.html

Stanford CS107 Handy one-page of x86-64
https://web.stanford.edu/class/archive/cs/cs107/cs107.1194/resources/onepage_x86-64.pdf

X86-64 Register and Instruction Quick Start
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start

ASCII
https://en.wikipedia.org/wiki/ASCII

Matt Godbolt’s compiler explorer site
https://godbolt.org

Intel 64 and IA-32 Architectures Software Develop’s Manual (VERY LARGE)
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-
2a-2b-2c-2d-3a-3b-3c-3d-and-4

System V Application Binary Interface AMD64 Architecture Processor Supplement
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

https://epaperpress.com/lexandyacc/download/flex.pdf
https://www.gnu.org/software/bison/manual/html_node/index.html
https://www.epaperpress.com/lexandyacc/download/LexAndYacc.pdf
https://sourceware.org/binutils/docs/as/
https://web.stanford.edu/class/archive/cs/cs107/cs107.1194/guide/x86-64.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1194/resources/onepage_x86-64.pdf
https://wiki.cdot.senecacollege.ca/wiki/X86_64_Register_and_Instruction_Quick_Start
https://en.wikipedia.org/wiki/ASCII
https://godbolt.org/
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

