CSE 115 Review Packet

The code given below is correct; it compiles without errors.
Use it as a reference for questions 1-5 in this review packet.

1
interface Container {
public boolean fill(Containable c);
public boolean isFull();
2 CpUblic Containable empty()i>

public interface Containable {
public String type();

public class Drink implements Containable {
3 private String _type;

public Drink() {
_type = new String("drink");

@Override public String type() { return _type; }

public class Wine extends Drink {
public Wine() {
super();

@Override public String type() {
return super.type() + ;8

public class Cup implements Container {
private Containable _drink;

public Cup(Containable c) {
if (!fill(c)) { // _drink = c, if c is valid
_drink = null; //_drink = null, if ¢ is invalid

@Override public boolean fill(Containable c) {
if (|| ¢ == null || !c.type().startsWith("drink")) {
5 return false;
}
_drink = c;
return true;

}
6

@verride public boolean isFull() { r‘etur‘n; }

@Override public Containable empty() {
Containable
_drink = null;
return result;

public class WineGlass extends Cup {
public WineGlass{Containable c) {

super(c); 7

@Override public boolean fill(Containable c) {
if (!c.type().contains("wine™)) {
10 return false;

}

return super.fill(c);

1. Draw a UML diagram that shows the relationships between the classes and interfaces in the
reference code. Make sure to consider all the types of relationships you've learned,
including realization, inheritance, association, and composition. You need only to consider
the classes and interfaces explicitly used (e.g. you should use String, but not Object).

b\)ine,

2. Draw an object diagram to show the resulting program state.

Drink d = new Drink();
Cup cupl = new Cup(d);

Wine w = new Wine();
Cup cup2 = new Cup(w);

WineGlass temp = new WineGlass(null); //temp is empty
temp.fill(cup2.empty());
cup2.fill(cupl.empty());
cupl.fill(temp.empty());

3. Write a class called BreadBox that is a Container. Using the Cup code as a reference,
BreadBox objects should only be allowed to contain Bread. The code for the Bread class

is provided below.

public class Bread implements Containable {
private String _type;

public Bread() { _type = new String(“"bread"); }

@Override public String type() { return _type; }

public class BreadBox implements Container {
private Containable bread;

public BreadBox(Containable c) {
if (Ifill(c)) {

_bread = null;
}
}
@0verride public boolean fill(Containable c) {
if (isFull() || ¢ == null || !c.type().startsWith("bread")) {
return false;
}
_bread = c;
return true;
}
@Override public boolean isFull() { return bread '= null; }
@Override public Containable empty() {
Containable result = bread;
_bread = null;

return result;

4. Given that the following code has been run:
WineGlass wg = new WineGlass(new Wine());

draw a memory diagram showing a possible snapshot of memory during the invocation
of the following method:

Wine w = wg.empty();

800 1000 | wg

801 1000 | this
802 1300 | result
803 w

1000
1001
1002
1003

1300
1301 _type
1302

1600
1601
1602

_drink

5. Circle, and identify by number, one and only one example of each of the following items
in the reference code. If you believe no example exists, write “no example” next to that item in
the list.

access control modifier
method header

instance variable declaration
local variable assignment
method call

boolean expression
parameter declaration

String literal

. type variable no example
0. conditional statement

SO0 NOO AN

6. The following method is correct except for one and only one line. Indicate which line is
incorrect and write a replacement for it.

/¥*
* Returns the sum of the squares of the all the numbers from 1 to n.
* If n is less than 1, returns 9.

* Examples: n=-1->80
* n=e ->0
* n=3 ->14 (1> + 2* + 3% = 14)
*/
1 public int sumOfSquares(int n) {
2 int result = 9;
3 while (n > @) {
4 result = n ~ 2;
5 n=n-1;
6 }
7 return result;
8 }

line 4: result = result + n * n;

7. Write a method which takes two Points as parameters (java.awt.Point) and returns a
boolean value. The method should return true only if the points are adjacent.

For example, if the method is named adjacent and is defined in a class named
Question7, then

new Question7().adjacent(null, new Point(0,0));
must not produce any runtime errors and must return false, and
new Question7().adjacent(new Point(©,6), new Point(1,5));
must not produce any runtime errors and must return false, whereas
new Question7().adjacent(new Point(1,3), new Point(2,3));

must not produce any runtime errors and must return true.

public boolean adjacent(Point p, Point q) {
if (p == null || q == null) {
return false;

}
int xDiff = p.x - qg.x;
int yDiff = p.y - q.y;

// take the absolute value
if (xDiff < 0) {

xDiff = -xDiff;
}

if (yDiff < 0) {
yDiff = -yDiff;
}

return (xDiff + yDiff == 1);
}

//another possible solution

public boolean adjacent(Point p, Point q) {
return p !'= null & q !'= null &&
Math.abs(p.x - q.x) + Math.abs(p.y - q.y) == 1;

8. Study the following code:

public void question8(char c, int n) {
for (int i =0; 1 <n; 1i=1+1) {
for (int § =0; j<=1i& j<n-1i; j =73+ 1) {
System.out.print(c);

}
System.out.println();

Show what is printed by the following method call:

question8('#', 4)

##
#i#

9. For this question, use an 8-bit wide two’s complement representation for integers.

a.
b.

Convert 23,, into two’s complement.

Convert 00101010 into decimal, interpreting the bit string as a two’s complement
number.

Compute 00001110, + 00111101,. Show your work.

Compute the two's complement of 00000110, and write down the result.

Also express the result in base 10. Show your work.

23 = 0*64 + 0*32 + 1*¥16 + 0*%8 + 1*4 + 1*2 + 1*1
= 00010111,
. 00101010, = 0*64 + 1*32 + 0*16 + 1*8 + 0*4 + 1*2 + 0*1
= 4210
1111
00001110
00111101
01001011
. 00000110

11111001 one's complement
00000001 add 1

11111010 two's complement

00000110,= 4 + 2 = 6,5, SO

10. For each vocabulary term, write down the letter of its definition in the box. Note that there
are more definitions than terms.

0 |this

b | invocation record
a [reference

n [stack

d |lifetime

i |class

9 | variable

K | heap

T [method

C | scope

The address at which an object is stored in memory

An encapsulation of the parameters and local variables used in
a method call

The part of a program where a variable declaration is in effect

The period of time during execution of a program that the
variable exists in memory

The representation scheme for floating point numbers
A behavior than an object is able to execute

Holds a value - either a primitive value or a reference to an
object

A class used to wrap a primitive value into an object

A description of the properties and behaviors that objects of
this type will have

A special method used to create an object by instantiating the
class

The part of memory where objects, their properties, and their
behaviors are stored

A data structure that stores an arbitrary number of references
to objects

. The part of memory where static variables and static methods

are stored
The part of memory where invocation records are stored

An implicit variable in a method which holds a reference to the
object on which the method was called

