

CSE 115 Review Packet

The code given below is correct; it compiles without errors.
Use it as a reference for questions 1-5 in this review packet.

public interface Container {

public boolean fill(Containable c);
public boolean isFull();
public Containable empty();

}

public interface Containable {
public String type();

}

public class Drink implements Containable {
private String _type;

public Drink() {
_type = new String("drink");

}

@Override public String type() { return _type; }
}

public class Wine extends Drink {
public Wine() {

super();
}

@Override public String type() {
return super.type() + ": wine";

}

}

public class Cup implements Container {
private Containable _drink;

public Cup(Containable c) {
if (!fill(c)) { // _drink = c, if c is valid

_drink = null; //_drink = null, if c is invalid
}

}

@Override public boolean fill(Containable c) {
if (isFull() || c == null || !c.type().startsWith("drink")) {

return false;
}

_drink = c;
return true;

}

@Override public boolean isFull() { return _drink != null; }

@Override public Containable empty() {
 Containable result = _drink;
 _drink = null;
 return result;
}

}

public class WineGlass extends Cup {
public WineGlass(Containable c) {

super(c);
}

@Override public boolean fill(Containable c) {
if (!c.type().contains("wine")) {

return false;
}

return super.fill(c);
}

}

1. Draw a UML diagram that shows the relationships between the classes and interfaces in the
reference code. Make sure to consider all the types of relationships you’ve learned,
including realization, inheritance, association, and composition. You need only to consider
the classes and interfaces explicitly used (e.g. you should use String, but not Object).

2. Draw an object diagram to show the resulting program state.

Drink d = new Drink();
Cup cup1 = new Cup(d);

Wine w = new Wine();
Cup cup2 = new Cup(w);

WineGlass temp = new WineGlass(null); //temp is empty
temp.fill(cup2.empty());
cup2.fill(cup1.empty());
cup1.fill(temp.empty());

3. Write a class called BreadBox that is a Container. Using the Cup code as a reference,
BreadBox objects should only be allowed to contain Bread. The code for the Bread class
is provided below.

public class Bread implements Containable {

private String _type;

public Bread() { _type = new String("bread"); }

@Override public String type() { return _type; }
}

4. Given that the following code has been run:

WineGlass wg = new WineGlass(new Wine());

draw a memory diagram showing a possible snapshot of memory during the invocation
of the following method:

Wine w = wg.empty();

5. Circle, and identify by number, one and only one example of each of the following items
in the reference code. If you believe no example exists, write “no example” next to that item in
the list.

1. access control modifier
2. method header
3. instance variable declaration
4. local variable assignment
5. method call
6. boolean expression
7. parameter declaration
8. String literal
9. type variable
10. conditional statement

6. The following method is correct except for one and only one line. Indicate which line is
incorrect and write a replacement for it.

 /**

 * Returns the sum of the squares of the all the numbers from 1 to n.

 * If n is less than 1, returns 0.

 * Examples: n = -1 -> 0

 * n = 0 -> 0

 * n = 3 -> 14 (12 + 22 + 32 = 14)
 */

1 public int sumOfSquares(int n) {
2 int result = 0;
3 while (n > 0) {
4 result = n ^ 2;
5 n = n - 1;
6 }

7 return result;
8 }

7. Write a method which takes two Points as parameters (java.awt.Point) and returns a
boolean value. The method should return true only if the points are adjacent.

For example, if the method is named adjacent and is defined in a class named
Question7, then

new Question7().adjacent(null, new Point(0,0));

must not produce any runtime errors and must return false, and

new Question7().adjacent(new Point(0,6), new Point(1,5));

must not produce any runtime errors and must return false, whereas

new Question7().adjacent(new Point(1,3), new Point(2,3));

must not produce any runtime errors and must return true.

8. Study the following code:

public void question8(char c, int n) {

for (int i = 0; i < n; i = i + 1) {
for (int j = 0; j <= i && j < n - i; j = j + 1) {

System.out.print(c);
}

System.out.println();
}

}

Show what is printed by the following method call:

question8('#', 4)

9. For this question, “binary” refers to an 8-bit two’s complement representation for
integers.

a. Convert 2310 into binary.
b. Convert 001010102 into decimal.
c. Compute 000011102 + 001111012. Show your work in binary.
d. Compute the two’s complement of 000001102 and write down the resulting

number’s base 10 representation. Show your work in binary.

10. For each vocabulary term, write down the letter of its definition in the box. Note that there
are more definitions than terms.

 this a. The address at which an object is stored in memory

b. An encapsulation of the parameters and local variables used in
a method call

c. The part of a program where a variable declaration is in effect

d. The period of time during execution of a program that the
variable exists in memory

e. The representation scheme for floating point numbers

f. A behavior than an object is able to execute

g. Holds a value - either a primitive value or a reference to an
object

h. A class used to wrap a primitive value into an object

i. A description of the properties and behaviors that objects of
this type will have

j. A special method used to create an object by instantiating the
class

k. The part of memory where objects, their properties, and their
behaviors are stored

l. A data structure that stores an arbitrary number of references
to objects

m. The part of memory where static variables and static methods
are stored

n. The part of memory where invocation records are stored

o. An implicit variable in a method which holds a reference to the
object on which the method was called

 invocation record

 reference

 stack

 lifetime

 class

 variable

 heap

 method

 scope

