

CSE115 / CSE503 Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall
alphonce@buffalo.edu

Office hours:

Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM - 5:00 PM

Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail

*Tuesday adjustments: 11:00 AM - 1:00 PM on 10/11, 11/1 and 12/6

Today

Announcements: Scientista & ACM / Notetaker

Polls

Gates

Memory

Basic computer organization

Coming up

Instruction decoding

Fetch/Decode/Execute cycle

Low-level and high-level languages

Expressions and objects

Scientista meeting Th @ 4:30 Davis 1st floor lounge facebook.com/ubscientista FREE FOOD!!

ACM meeting Th @ 5:30 Davis 2nd floor lounge ubacm.org No free food, BUT BBQ Fri!

Notetaker request:

Thanks to everyone: no more volunteers needed!

POLL

Until we do an interactive exercise or a poll, turn off and put away electronics:

cell phones

pagers

laptops

tablets

etc.

REVIEW

Physical reality:

WIRE

Carries a HIGH voltage or a LOW voltage

Logical view:

WIRE

Carries a 1 or a 0

http://historycomputer.com/ModernComputer/Basis/relay. html

For which input values is output 1?

For which input values is output 0?

Input 1	Input 2	Output
0	0	0
0	1	0
1	0	0
1	1	1

MOVING ON

For which input values is output 1?

For which input values is output 0?

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	1

For which input value is output 1?

For which input value is output 0?

Input	Output
0	1
1	0

MEMORY

The normal value of both R and S is zero

To store 1 in the flip-flop, we "raise" S to 1

which makes the output of the OR gate 1

The NOT gate inverts this 1 value to 0, which becomes the second input to the upper OR gate.

Since both inputs of the upper OR gate are zero, its output is zero.

The NOT gate inverts this 0 to a 1; this value becomes the second input to the bottom OR.

Because the output of the bottom OR gate will now stay at 1, we can lower S to zero, and the circuit will stay in a stable state, with 1 as the remembered value!

Resetting the remembered value to zero is similar, except we raise, then lower, the value on R.

A sequence of bits (a.k.a. bit string) by itself does not carry meaning.

A bit string can be interpreted under a given representation scheme, which allows us to recover the encoded meaning.

Circuits made from simple gates let us store and manipulate bit strings.

1 flip-flop stores 1 bit 1 byte = 8 bits

Primary storage (2^x)

Secondary storage (10^x)

1 KB =
$$2^{10}$$
 bytes (1,024 bytes)

$$1 \text{ kB} = 10^3 \text{ bytes}$$
 (1,000 bytes)

1 MB =
$$2^{20}$$
 bytes (1,048,576 bytes)

$$1 \text{ MB} = 10^6 \text{ bytes}$$
 (1,000,000 bytes)

1 GB =
$$2^{30}$$
 bytes (1,073,741,824 bytes)

$$1 \text{ GB} = 10^9 \text{ bytes}$$
 (1,000,000,000 bytes)

For more info, see https://en.wikipedia.org/wiki/Binary_prefix

INSTRUCTION DECODING

Memory Central Processing Unit (CPU)

Memory Central Processing Unit (CPU)

Arithmetic Logic Unit (ALU) Registers

Memory

Central Processing Unit (CPU)

Arithmetic Logic Unit (ALU)

Registers

General purpose (e.g. R1 – R16)

Special purpose (e.g. Program Counter and Instruction Register)

Memory (RAM)

Processor (CPU)

