
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

© Dr. Carl Alphonce

ANNOUNCEMENTS

AN
N

O
U

N
C

EM
EN

TS

Recitations start this week (in Baldy 21)

Bring your UB card

Main course website:
www.cse.buffalo.edu/faculty/alphonce/cse115/

© Dr. Carl Alphonce

RE
AD

IN
G

S
Quick overview on the weekend.

Revisit in detail throughout the week.

Do embedded exercises to check your
understanding. No set due-date, but keep up
so you don’t fall behind.

Moving forward, I will generally post readings
for the upcoming week by Thursday evening.

© Dr. Carl Alphonce

RO
AD

M
AP

Last time
Low-level issues

Today
Expressions and objects
Memory diagrams

Coming up
Class definitions
Variables
Method calls
Object diagrams

© Dr. Carl Alphonce

PR
O

FE
SS

IO
N

AL
IS

M
Please turn off and put away electronics:

cell phones
pagers
laptops
tablets
etc.

© Dr. Carl Alphonce

© Dr. Carl Alphonce

REVIEW

INSTRUCTION
DECODING

© Dr. Carl Alphonce

C
om

p
ut

er
 O

rg
a

ni
za

tio
n

Processor (CPU)

R1 R2

. . . R16

PC IR

ALU

11010010
11010010
11010010
11010010
11010010
11010010
11010010

Memory
(RAM)

This wire will carry a 1
only if the op code of
the instruction is 1100.

In
st

ru
ct

io
n

d
ec

od
in

g
OP CODE R1 R2

This wire will carry a 1
only if the op code of
the instruction is 1101.

This wire will carry a 1
only if the op code of
the instruction is 1110.

t t t t t t t t t t t t t t t t

FETCH
DECODE
EXECUTE

cycle

© Dr. Carl Alphonce

Fe
tc

h-
D

ec
od

e-
Ex

ec
ut

e
cy

cl
e Fetch an instruction (& update PC)

Decode instruction

Execute instruction

Fetch
(load instruction

into IR from
location in PC)

Update PC

Decode

Execute

La
ng

ua
ge

 le
ve

ls

HARDWARE

MACHINE LANGUAGE
(1101000001000010)

ASSEMBLY LANGUAGE
(ADD R1 R2)

HIGH LEVEL LANGUAGES
x + y

COMPILATION

ASSEMBLY

{LOW
LEVEL

LANGUAGES

© Dr. Carl Alphonce

MOVING ON

Q
ue

st
io

n

Is every formal language a “programming
language”?

In other words, can any formal language be
used to solve any computational problem?

No.

Re
qu

ire
m

en
ts

 o
f a

 P
L

What makes a language a programming
language? (Böhm-Jacopini theorem, 1966)

Sequencing
Selection
Repetition

Sequencing
the language must permit the order of instructions to be specified

Selection
the language must permit different instructions to be executed based
on the outcome of a decision

Repetition
the language must permit an instruction to be executed repeatedly,
based on the the outcome of a decision

Eq
ui

va
le

nc
es

Computation models
Turing Machine (en.wikipedia.org/wiki/Turing_machine)
Lambda calculus (en.wikipedia.org/wiki/Lambda_calculus)
and others (en.wikipedia.org/wiki/Computable_function)

Examples of high-level programming languages
Java
C#
Erlang
Fortran
Prolog
Python
Lisp
ML
Ruby

H
ig

h-
le

ve
l l

an
gu

ag
es

Richer syntax than
Machine language (bit strings)
Assembly language (mnemonic)

Improved readability/writeability

Must be translated (compiled) to machine language

Ja
va

A modern high-level language

A (relatively) small and simple core language

Object-oriented

Large libraries

M
ov

in
g

on
…

We will return to low-level issues later in the
semester, and also in later courses.

This brief low-level discussion gives context for
upcoming topics.

Now we turn to some higher-level issues.

I h
av

e
a

qu
es

tio
n

fo
r y

ou
! What did you have for breakfast today?

I h
av

e
a

qu
es

tio
n

fo
r y

ou
! What did you have for breakfast today?

This exercise is due to Dr. Joe Bergin.

Ac
tiv

ity

The goal of this short activity is to
demonstrate two things:

1. objects have state
2. objects have identity
3. objects have behaviors
4. sending a message to an object can trigger

one of its behaviors

Q
ue

st
io

ns
?

O
bj

ec
ts

OO software systems are systems of interacting objects.

Objects have

properties:
these are things that objects know
e.g. what you had for breakfast

behaviors:
these are things objects do
e.g. being able to reply to the question “What did you have for
breakfast?”

H
ow

 d
o

w
e

cr
ea

te
 a

n
ob

je
ct

? new example1.BarnYard()

There are three parts to this expression:
new
example1.BarnYard
()

Ex
pr

es
si

on
 e

va
lu

at
io

n
evaluating new example1.BarnYard()

produces a value

as a side effect causes an object to be created and initialized

(part of) memory

107
108
109
110
111
112
113
114
115

Understanding the side effect

Understanding the side effect

At any given point in time some
locations in memory are being actively
used to hold information, while others
are available for use.

For the sake of this example, let us
assume that the memory locations with
addresses 107 and 115 are in use, and
locations with addressed 108 through
114 are available.

used
available
available
available
available
available
available
available

used

107
108
109
110
111
112
113
114
115

(part of) memory

evaluating a ‘new’ expression

used
available
available
available
available
available
available
available

used

107
108
109
110
111
112
113
114
115

When evaluating an expression like ‘new
example1.BarnYard()’, the operator ‘new’
first determines the size of the object to be
created (let us say it is four bytes for the
sake of this example).

evaluating a ‘new’ expression

used
reserved by ‘new’
reserved by ‘new’
reserved by ‘new’
reserved by ‘new’

available
available
available

used

107
108
109
110
111
112
113
114
115

When evaluating an expression like ‘new
example1.BarnYard()’, the operator ‘new’
first determines the size of the object to be
created (let us say it is four bytes for the
sake of this example).

Next, new must secure a contiguous block
of memory four bytes large, to store the
representation of the object.

evaluating a ‘new’ expression

used
10101010
10101010
10101010
10101010
available
available
available

used

107
108
109
110
111
112
113
114
115

When evaluating an expression like ‘new
example1.BarnYard()’, the operator ‘new’
first determines the size of the object to be
created (let us say it is four bytes for the
sake of this example).

Next, new must secure a contiguous block
of memory four bytes large, to store the
representation of the object.

Bit strings representing the object are
written into the reserved memory locations.
In this example we use “10101010” to
indicate that some bit string was written
into a given memory location; the exact bit
string written depends on the specific
details of the object.

evaluating a ‘new’ expression

used
10101010
10101010
10101010
10101010
available
available
available

used

107
108
109
110
111
112
113
114
115

When evaluating an expression like ‘new
example1.BarnYard()’, the operator ‘new’
first determines the size of the object to be
created (let us say it is four bytes for the
sake of this example).

Next, new must secure a contiguous block
of memory four bytes large, to store the
representation of the object.

Bit strings representing the object are
written into the reserved memory locations.
In this example we use “10101010” to
indicate that some bit string was written
into a given memory location; the exact bit
string written depends on the specific
details of the object.

The starting address of the block of
memory holding the object’s representation
is the value of the ‘new’ expression. This
address is called a ‘reference’.

Ex
pr

es
si

on
 e

va
lu

at
io

n
evaluating new example1.BarnYard()

produces a value (which we call a reference)

causes a side effect (an object is created and initialized)

we can remember a reference value by storing it in a variable

Th
e

va
ria

bl
e

de
cl

ar
at

io
n

Variables must be declared before use
declaration specifies encoding scheme
declaration specifies size

Declaration consists minimally of
type
name

Examples
example1.BarnYard by ;
example1.Chicken c ;

The semicolon ‘;’ is a
terminator.

as
si

gn
m

en
t s

ta
te

m
en

t
To associate a value with a variable, use an assignment
statement:

SYNTAX: <variable> = <expression> ;

‘=’ is the ASSIGNMENT OPERATOR (it is not ‘equals’!)

Example

by = new example1.BarnYard();

“by is assigned the value of the expression ‘new example1.BarnYard()’ ” …or…

“by is assigned a reference to a new example1.BarnYard() object” …or…

“by is assigned a reference to a new BarnYard object” (example1 is implied)

