
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

© Dr. Carl Alphonce

ANNOUNCEMENTS

AN
N

O
U

N
C

EM
EN

TS
Undergraduate TA office hours will be
ramped up to meet demand.

This week:
Kira - Tuesday at 5:00
Corwyn - Wednesday at 2:00
Steven - Thursday at 1:00

See “UTA Office Hours” table here:
www.cse.buffalo.edu/faculty/alphonce/cse115/people.php

© Dr. Carl Alphonce

(a
 v

er
y

ea
rly

) E
XA

M
 1

 N
O

TI
C

E DATE: Tuesday October 4
TIME: 8:45 PM – 9:45 PM
LOCATION: various rooms in NSC

specific room/seat assignments to come
COVERAGE:

lecture material up to and including 9/23 (this week)
lab material up to and including lab 3 (next week)
readings: all assigned up to and including 3.2

HAVE A CONFLICT?
I will ask for documentation 9/26 – 9/30

BRING: your UB card
NO ELECTRONICS: cell phone, calculator, etc.

© Dr. Carl Alphonce

© Dr. Carl Alphonce

ELECTRONICS:
off & away

RO
AD

M
AP

Last time
variables
expression evaluation
object diagrams

Today
class definitions in detail (terminology review)
variable scope & lifetime
method definitions

Coming up
class relationships © Dr. Carl Alphonce

© Dr. Carl Alphonce

REVIEW

497362
497363
497364
497365
497366
497367
497368
497369
497370

example1.Chicken object

example1.Chicken object

available
available

example1.BarnYard object

example1.BarnYard object

example1.BarnYard object

example1.BarnYard object

used

12203
12204
12205
12206
12207
12208
12209
12210
12211

used
available
available
497366
497362
available
available
available
available

example1.BarnYard

example1.Chicken

c

by

Object diagram
(corresponding to memory diagram on previous slide)

by

c
Boxes
denote

variables

Ovals
denote
objects

Arrows
denote

references This diagram is an abstraction
of the one on the previous slide:
it ignores irrelevant details, such
as the addresses and sizes of
the two objects being shown.
An abstraction is thus a simplification.

© Dr. Carl Alphonce

MOVING ON

O
ur

 fi
rs

t c
la

ss
 d

ef
in

iti
on

!

package lab2;

public class Farm {
public Farm() {
}

}

Here’s a minimal class definition. We will label and
discuss each part of it in detail next class. For now we
identify the major parts:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

Package declaration is shown in green:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

package is a reserved word:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

lab2 is the name of the package – you choose this
(we’ll cover naming rules and conventions later):

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

A semicolon ‘;’ marks the end of the declaration:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

The class definition is shown in green:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

The class definition consists of a header . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . and a body:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

The class header consists of an access control modifier . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . the reserved word class . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . and a class name:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

The class body begins with an opening brace ‘{’ . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . and ends with the matching closing brace ‘}’ :

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

In this example, the body consists of a single constructor
definition:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

The constructor definitions consists of a header . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . and a body:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

The constructor header consists of an access control modifier . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . the constructor name (which is the same as the class name) . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . and a parameter list:

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

The constructor body begins with an opening brace ‘{’ . . .

Sy
nt

ax package lab2;

public class Farm {
public Farm() {
}

}

. . . and ends with the matching closing brace ‘}’ :

© Dr. Carl Alphonce

VARIABLES
(more detail)

A
va

ria
bl

e
is

:
(a

t i
ts

 m
os

t b
as

ic
)

A variable exists at a storage location in memory.
For example, location 12207:

space for a variable

12203
12204
12205
12206
12207
12208
12209
12210
12211

A
va

ria
bl

e
ha

s:

a name
a location
a type
a value
a scope
a lifetime

à in the HLL (Java)
à in memory
à representation scheme/size
à contents

We’ll discuss these next

A
va

ria
bl

e
ha

s:

a name
a location
a type
a value
a scope
a lifetime

à determined by declaration

à determined by declaration

A
va

ria
bl

e
ha

s:

a name
a location
a type
a value
a scope
a lifetime

à determined by assignment

© Dr. Carl Alphonce

SCOPE
(no, not the mouthwash…)

Va
ria

bl
e

sc
op

e
The scope of a variable is the part of a program
where a variable declaration is in effect.

Variables declared in different ways have different
scope:

local variables

instance variables

Sc
op

e
of

 a
 lo

ca
l v

ar
ia

bl
e A variable declared within a constructor (or a

method) is called a local variable.

The scope of a local variable is from the point of the
declaration to the end of the brace-delimited block
containing the declaration.

Sc
op

e
of

 ‘c
’

package lab2;

public class Farm {
public Farm() {

example1.Terrarium t;
t = new example1.Terrarium();
example1.Chicken c;
c = new example1.Chicken();
t.addChicken(c);
c.start();

}
}

Declaration

End of	block	
containing	
declaration

Sc
op

e
of

 a
n

in
st

an
ce

 v
ar

ia
bl

e
A variable declared within a class but outside of any
method is called an instance variable.

The scope of an instance variable is the entire class
body.

Sc
op

e
of

 ‘_
ta

il’

package code;

public class Dog {

private Tail _tail;

public Dog() {
_tail = new Tail();

}

}

Declaration

End of	block	containing	
declaration	(class	definition)

Start of	block	containing	
declaration	(class	definition)

© Dr. Carl Alphonce

LIFETIME
(sorry, no pun here)

Li
fe

tim
e

of
 a

 v
ar

ia
bl

e
The lifetime of a variable is the period of time during
execution of a program that the variable exists in
memory. This is a dynamic property (one relating to
runtime).

Variables declared in different ways have
different lifetimes:

local variables

instance variables

M
em

or
y

or
ga

ni
za

tio
n

Process BProcess A Process C

STATIC
SEGMENT HEAP FREE/AVAILABLE

MEMORY
RUNTIME

STACK

dynamically allocated memory

Li
fe

tim
e

of
 a

 lo
ca

l v
ar

ia
bl

e
A local variable comes into existence when a method is
called, and disappears when the method is completed.

Space for a local variable is allocated in a special region of
memory, called the runtime stack.

All the local variables of a method are allocated space in the
same area, called a stack frame (or invocation record).

M
em

or
y

or
ga

ni
za

tio
n

Process BProcess A Process C

STATIC
SEGMENT

RUNTIME
STACK

FREE/AVAILABLE
MEMORYHEAP

Local variables are stored on the runtime stack.
Each method invocation (call) results in an invocation
record (stack frame) being added to the top of the
stack. When a method exits, its invocation record is
removed from the top of the stack.

Li
fe

tim
e

of
 a

n
in

st
an

ce
 v

ar
ia

bl
e Instance variables are created when a class is instantiated.

‘new’ allocates memory from the heap

Each object has its own set of instance variables.
the variables are the constituents of an object
instance variables therefore exist on the heap

Instance variables persist as long as their objects persist
as far as we know right now, objects persist until the end of the
runtime of the program.

M
em

or
y

or
ga

ni
za

tio
n

Process BProcess A Process C

STATIC
SEGMENT HEAP FREE/AVAILABLE

MEMORY
RUNTIME

STACK

All memory allocated by ‘new’ comes from the heap.

Objects are allocated space by ‘new’, and their
representations (which contain their instance
variables) therefore exist on the heap.

