
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

© Dr. Carl Alphonce

ANNOUNCEMENTS

(a
 v

er
y

ea
rly

) E
XA

M
 1

 N
O

TI
C

E DATE: Tuesday October 4
TIME: 8:45 PM – 9:45 PM
LOCATION: various rooms in NSC

specific room/seat assignments to come
COVERAGE:

lecture material up to and including 9/23 (this week)
lab material up to and including lab 3 (next week)
readings: all assigned up to and including 3.2

HAVE A CONFLICT?
I will ask for documentation 9/26 – 9/30

BRING: your UB card
NO ELECTRONICS: cell phone, calculator, etc.

© Dr. Carl Alphonce

© Dr. Carl Alphonce

ELECTRONICS:
off & away

RO
AD

M
AP

Last time
class definitions in detail (terminology review)
variable scope & lifetime

Today
method definitions

Coming up
class relationships

© Dr. Carl Alphonce

© Dr. Carl Alphonce

REVIEW

Sc
op

e
&

Li
fe

tim
e

SCOPE LIFETIME

LOCAL VARIABLE

From point of declaration to
end of brace-delimited block

containing the declaration

For now think roughly:
method body

From method invocation to
method exit: the duration of a

method call.

For now, think roughly:
short/fleeting

INSTANCE VARIABLE class body

From object creation to object
reclamation.

For now, think roughly:
long/persistent

M
em

or
y

or
ga

ni
za

tio
n

STATIC
SEGMENT

RUNTIME
STACK

FREE/AVAILABLE
MEMORYHEAP

Local variables are stored on
the runtime stack. Each method
invocation (call) results in an
invocation record (stack frame)
being added to the top of the
stack. When a method exits, its
invocation record is removed
from the top of the stack.

HEAP

All memory allocated by ‘new’
comes from the heap.

Objects are allocated space by
‘new’, and their representations
(which contain their instance
variables) therefore exist on the
heap.

W
e’

ve
 s

ee
n

th
is

 c
od

e
be

fo
re

package demo;
public class Farm {

public Farm() {
example1.BarnYard by;
by = new example1.BarnYard();
example1.Chicken c;
c = new example1.Chicken();
by.addChicken(c);
c.start();

}

}

© Dr. Carl Alphonce

All the code in the Farm
constructor executes

whenever a new Farm object
is created.

What if we want to be able to
add moving Chickens to the

Farm’s BarnYard at a later
point in time?

sy
nt

ax
package demo;
public class Farm {

public Farm() {
example1.BarnYard by;
by = new example1.BarnYard();

}
public void addMovingChicken() {

example1.Chicken c;
c = new example1.Chicken();
by.addChicken(c);
c.start();

}
}

© Dr. Carl Alphonce

Move the
Chicken

creating code
into its own

method.

A constructor
can be called

ONLY to create
a new object.
It cannot be

invoked on an
existing object.

A method can
be called only
on an already

existing object.

sy
nt

ax
package demo;
public class Farm {

private example1.BarnYard _by;
public Farm() {

_by = new example1.BarnYard();
}
public void addMovingChicken() {

example1.Chicken c;
c = new example1.Chicken();
_by.addChicken(c);
c.start();

}
}

© Dr. Carl Alphonce

Make _by an
instance

variable so that
it has scope
thoughout
entire class

body.

sy
nt

ax
package demo;
public class Farm {

private example1.BarnYard _by;
public Farm() {

this._by = new example1.BarnYard();
}
public void addMovingChicken() {

example1.Chicken c;
c = new example1.Chicken();
this._by.addChicken(c);
c.start();

}
}

© Dr. Carl Alphonce

Technically only the variables in a
method’s invocation record can be

directly accessed in a method. ‘this’ is
an implicit variable in each method

which holds a reference to the object on
which the method was called.

sy
nt

ax

public void addMovingChicken () {
…declarations & statements...

}

‘void’ is a return type specification. It
indicates that this method does not return a
value when called.

© Dr. Carl Alphonce

sy
nt

ax

public void addMovingChicken () {
…declarations & statements...

}

‘addMovingChicken’ is the name of the
method. We get to choose that.

© Dr. Carl Alphonce

sy
nt

ax

public void addMovingChicken () {
…declarations & statements...

}

‘()’ is the parameter list of the method. In this
case the parameter list is empty.

© Dr. Carl Alphonce

sy
nt

ax
package demo;
public class Farm {

private example1.BarnYard _by;
public Farm() {

_by = new example1.BarnYard();
}
public void addMovingChicken() {

example1.Chicken c;
c = new example1.Chicken();
_by.addChicken(c);
c.start();

}
}

© Dr. Carl Alphonce

‘this’ is usually left
implicit.

The compiler can
usually figure out
where to put ‘this’.

