
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

© Dr. Carl Alphonce

ANNOUNCEMENTS

(a
 v

er
y

ea
rly

) E
XA

M
 1

 N
O

TI
C

E DATE: Tuesday October 4
TIME: 8:45 PM – 9:45 PM
LOCATION: various rooms in NSC

specific room/seat assignments to come
COVERAGE:

lecture material up to and including 9/23 (this week)
lab material up to and including lab 3 (next week)
readings: all assigned up to and including 3.2

BRING: your UB card
NO ELECTRONICS: cell phone, calculator, etc.

© Dr. Carl Alphonce

© Dr. Carl Alphonce

IF YOU HAVE A CONFLICT

send me e-mail:
alphonce@buffalo.edu

use this subject line:
[CSE115] Exam 1 conflict

attach documentation of conflict
(e.g. screenshot of class schedule that has your name

and the conflict)

no later than:
9:00 PM on Wednesday Sept 28

EX
TR

A
SU

PP
O

RT
Extra office hours have been added Th/Fr this week

See PEOPLE page of course website

We are arranging for exam review sessions on the
weekend – stay tuned for room/date/time details

© Dr. Carl Alphonce

© Dr. Carl Alphonce

ELECTRONICS:
off & away

RO
AD

M
AP

Last time
method definitions
invocation records
‘this’

Today
Relationships (composition/association)

Coming up
Relationships (continued)

© Dr. Carl Alphonce

© Dr. Carl Alphonce

REVIEW

Sc
op

e
&

Li
fe

tim
e

SCOPE LIFETIME

LOCAL VARIABLE

From point of declaration to
end of brace-delimited block

containing the declaration

For now think roughly:
method body

From method invocation to
method exit: the duration of a

method call.

For now, think roughly:
short/fleeting

INSTANCE VARIABLE class body

From object creation to object
reclamation.

For now, think roughly:
long/persistent

M
em

or
y

or
ga

ni
za

tio
n

STATIC
SEGMENT

RUNTIME
STACK

FREE/AVAILABLE
MEMORYHEAP

Local variables are stored on
the runtime stack. Each method
invocation (call) results in an
invocation record (stack frame)
being added to the top of the
stack. When a method exits, its
invocation record is removed
from the top of the stack.

HEAP

All memory allocated by ‘new’
comes from the heap.

Objects are allocated space by
‘new’, and their representations
(which contain their instance
variables) therefore exist on the
heap.

© Dr. Carl Alphonce

MOVING ON

© Dr. Carl Alphonce

RELATIONSHIPS

Re
la

tio
ns

hi
ps

 in
 m

od
el

 a
nd

 c
od

e
relationships exist between objects in problem domains

want to capture those relationships in our models and
express them in our code

C
om

pu
tin

g
an

d
C

lif
fo

rd

Tw
o

re
la

tio
ns

hi
ps

Clifford’s relationship to his collar
Clifford is associated with different collars
throughout his life

Clifford’s relationship to his tail
Clifford has the same tail throughout his life

ASSOCIATION

COMPOSITION

© Dr. Carl Alphonce

COMPOSITION
(whole-part)

C
om

po
si

tio
n

A whole-part relationship (e.g. Dog-Tail)

Whole and part objects have same lifetime

when whole is created, it has its parts

when whole is destroyed, parts go away too

W
ho

le
/p

ar
t c

re
at

io
n

in
 c

od
e In code, this involves 3 changes to whole class:

Declaration of instance variable of part type

Instantiation of part class in whole class constructor

Assignment of new part instance to instance variable

Im
po

rta
nt

 p
oi

nt
s

ab
ou

t c
om

po
si

tio
n

Whole has responsibility for creating its parts (which
is why instantiation of parts happens in constructor
of whole).

Whole can communicate with parts. This is why an
instance variable is declared: to establish a name for
the newly created object.

D
og

 –
Ta

il
ex

am
pl

e
in

 J
av

a

public class Dog {
private Tail _tail;
public Dog() {

_tail = new Tail();
}

}

What kind of declaration is this:
private Tail _tail;

A. method
B. class
C. local	variable
D. instance	variable

What kind of declaration is this:
private Tail _tail;

UML
CLASS

DIAGRAMS

U
M

L
cl

as
s

di
ag

ra
m

s
UML = Unified Modeling Language

express design without reference to an implementation
language

Examples:

Bi
na

ry
 C

la
ss

 R
el

at
io

ns
hi

ps
: d

ire
ct

io
na

l

binary à two classes are involved
source class has code modification
target class does not

composition
source: WHOLE
target: PART

in diagram:
line decoration is on source/WHOLE
show only detail that’s needed/desired

W
ith

ou
t c

om
po

si
tio

n

package cse115;

public class Dog {

public Dog() {

}

}

package cse115;

public class Tail {

public Tail() {

}

}

W
ith

 c
om

po
si

tio
n

package cse115;

public class Tail {

public Tail() {

}

}

Source	class Target	class
Relationship	 line	
for	composition

Decoration	(a	diamond)	 is	on	source	side	of	line	for	composition

Source	class	declares	an	
instance	variable	of	the	target	
class	type

Source	class	instantiates	the	target	
class	in	its	constructor

In	the	source	class’	 constructor	a	
reference	to	a	new	instance	of	the	
target	class	is	assigned	 to	the	
instance	variable.

package cse115;

public class Dog {
private Tail _tail;
public Dog() {

_tail = new Tail();
}

}

N
am

in
g

ru
le

s

names can consist of
UPPER CASE LETTERS
lower case letters
digits (0 – 9)
the underscore, ‘_’
first character cannot be a digit

this is a slight simplification of the actual rules
they are the truth
they are not the whole truth

N
am

in
g

co
nv

en
tio

ns
packages:

no upper case letters used (this_is_an_example)

classes (and constructor names):
first character: upper case letter
camel case afterwards (ThisIsAnExample)

instance variables:
first character: underscore ‘_’
second character: lower case
camel case afterwards (_thisIsAnExample)

local variables (and method names):
first character: lower case
camel case afterwards (thisIsAnExample)

© Dr. Carl Alphonce

ASSOCIATION

As
so

ci
at

io
n

No necessary lifetime link between the two objects
involved

Two implementations:

The first is very similar to composition, but differs in one
crucial respect: where the target class is instantiated.

The second, which decouples lifetimes completely, is a
bit more complex but also more flexible.

Re
vi

si
tin

g
C

lif
fo

rd
Dog-Tail relationship is COMPOSITION

Dog takes responsibility for creating a Tail

Dog-Collar relationship is ASSOCIATION
Dog takes NO responsibility for creating Collar

Fi
rs

t i
m

pl
em

en
ta

tio
n

3 changes to source class:

1. Declaration of instance variable

2. Assignment of existing instance to the instance
variable

3. Parameter of constructor is of same type as instance
variable

1

2

3

D
og

 –
C

ol
la

r e
xa

m
pl

e
in

 J
av

a

public class Dog {

private Collar _myCollar;

public Dog(Collar c) {

_myCollar = c;

}

}

1

2

3

Pa
ra

m
et

er
s

vs
 a

rg
um

en
ts

A parameter is a variable
declared in the parameter list of a method definition

An argument is a value
provided in the argument list of a method call

When a method is called each parameter is
assigned the corresponding argument.

The parameters are local variables, and appear in the
method’s invocation record.

© Dr. Carl Alphonce

m
at

he
m

at
ic

al
 e

xa
m

pl
e

on
 b

oa
rd

The area of a rectangle whose height is h and width
is w can be computed using this function:

f(h,w) = h * w

To compute the area of a specific rectangle we
supply concrete values that substitute for the
unknowns h and w:

f(3,5) = h * w where h=3 and w=5, or 3*5 = 15

h and w are parameters
3 and 5 are arguments

© Dr. Carl Alphonce

