
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

© Dr. Carl Alphonce

ANNOUNCEMENTS

(a
 v

er
y

ea
rly

) E
XA

M
 1

 N
O

TI
C

E DATE: Tuesday October 4
TIME: 8:45 PM – 9:45 PM
LOCATION: various rooms - assignments on Friday
COVERAGE:

lecture material up to and including 9/23 (this week)
lab material up to and including lab 3 (next week)
readings: all assigned up to and including 3.2

BRING: your UB card
NO ELECTRONICS: cell phone, calculator, etc.

© Dr. Carl Alphonce

© Dr. Carl Alphonce

IF YOU HAVE A CONFLICT

send me e-mail:
alphonce@buffalo.edu

use this subject line:
[CSE115] Exam 1 conflict

attach documentation of conflict
(e.g. screenshot of class schedule that has your name

and the conflict)

no later than:
9:00 PM on Wednesday Sept 28

EX
TR

A
SU

PP
O

RT
Extra office hours have been added Th/Fr this week

See PEOPLE page of course website

We are arranging for exam review sessions on the
weekend – stay tuned for room/date/time details

EXAM 1 REVIEW SESSIONS:

Sat Oct 1 2016 4:00PM - 5:30PM in Davis 101
Mon Oct 3 2016 5:00PM - 6:20PM in Knox 110

© Dr. Carl Alphonce

© Dr. Carl Alphonce

ELECTRONICS:
off & away

RO
AD

M
AP

Last time
Relationships

composition
association

Today
Relationships (continued)

association
accessor/mutator methods

Coming up
Relationships (continued)

© Dr. Carl Alphonce

© Dr. Carl Alphonce

REVIEW

Tw
o

re
la

tio
ns

hi
ps

Clifford’s relationship to his tail
Clifford has the same tail throughout his life

Clifford’s relationship to his collar
Clifford is associated with different collars
throughout his life

ASSOCIATION

COMPOSITION

Re
vi

si
tin

g
C

lif
fo

rd
Dog-Tail relationship is COMPOSITION

Dog takes responsibility for creating a Tail

Dog-Collar relationship is ASSOCIATION
Dog takes NO responsibility for creating Collar

As
so

ci
at

io
n

No necessary lifetime link between the two objects
involved

Two implementations:

The first is very similar to composition, but differs in one
crucial respect: where the target class is instantiated.

The second, which decouples lifetimes completely, is a
bit more complex but also more flexible.

Fi
rs

t i
m

pl
em

en
ta

tio
n

3 changes to source class:

1. Declaration of instance variable

2. Assignment of existing instance to the instance
variable

3. Parameter of constructor is of same type as instance
variable

1

2

3

D
og

 –
C

ol
la

r e
xa

m
pl

e
in

 J
av

a

public class Dog {

private Collar _myCollar;

public Dog(Collar c) {

_myCollar = c;

}

}

1

2

3

© Dr. Carl Alphonce

MOVING ON

Pa
ra

m
et

er
local variable declared in parameter list

parameter list appears in method header

value of parameter is determined at method
call

the value of the argument expression is assigned
to the parameter on entry to the method

multiple parameter declarations are separated
by commas in the parameter list

(Actor a, Director d, Screenwriter s)

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}
public class Dog {

private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

small

fido

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}
public class Dog {

private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

Collar object
small

fido

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}
public class Dog {

private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

Collar object
small

fido

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}
public class Dog {

private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

Dog object

_myCollar

Collar object
small

fido

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}
public class Dog {

private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

small

fido

Collar object

Dog object
c

_myCollar

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}

public class Dog {
private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

(argument: a value)

(parameter: a local variable)

(implicit) assignment

Collar object

Dog object

_myCollar

small

fido

c

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}
public class Dog {

private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

small

fido

Collar object

Dog object
c

_myCollar

D
ur

in
g

ex
ec

ut
io

n…
public class SomeClass {

public void someMethod() {
Collar small;
Dog fido;
small = new Collar();
fido = new Dog(small);

}
}
public class Dog {

private Collar _myCollar;
public Dog(Collar c) {

_myCollar = c;
}

}

small

fido

Collar object

Dog object

_myCollar

© Dr. Carl Alphonce

ASSOCIATION
(general implementation)

M
ut

at
or

m
et

ho
d:

 s
et

tin
g

a
va

ria
bl

e’
s

va
lu

e

A method which changes the value of an
instance variable.

Allows us to grant WRITE access to the
contents of a variable which itself is PRIVATE.

As
so

ci
at

io
n:

 c
on

st
ru

ct
or

 &
 m

ut
at

or
m

et
ho

d public class Dog {

private Collar _collar;

public Dog(Collar c) {
_collar = c;

}

public void setCollar(Collar c) {
_collar = c;

}

}

PA
RA

M
ET

ER
 D

EC
LA

RA
TI

O
N

public class Dog {

private Collar _collar;

public Dog(Collar c) {
_collar = c;

}

public void setCollar(Collar c) {
_collar = c;

}

}

AS
SI

G
NM

EN
T

TO
 IN

ST
AN

CE
 V

AR
IA

BL
E

public class Dog {

private Collar _collar;

public Dog(Collar c) {
_collar = c;

}

public void setCollar(Collar c) {
_collar = c;

}

}

C
on

st
ru

ct
or

 a
nd

 m
ut

at
or

s:
si

m
ila

rit
ie

s
an

d
di

ffe
re

nc
es

Similarities:
both set the value of an
instance variable

Differences:
constructor sets value of
an instance variable when
the class is instantiated

mutator sets the value of
an instance variable
after the object already
exists

constructor initializes
ALL instance variables

mutator sets the value of
just one instance variable

public class Dog {
private Collar _collar;
private Sweater _sweater;
private Tail _tail;
public Dog(Collar c, Sweater s){
_collar = c;
_sweater = s;
_tail = new Tail();

}
public void setCollar(Collar abc){
_collar = abc;

}
public void setSweater(Sweater q){
_sweater = q;

}
}

Return statement consists of the keyword “return”, followed by
an expression whose type matches the given return type
public class Farm {

private example1.BarnYard _t;
public Farm() {

_t = new example1.BarnYard();
}
public example1.BarnYard getBarnYard() {

return _t;
}

}

vo
id

 v
s.

 n
on

-v
oi

d
m

et
ho

ds

A void method has no return value, and the method
call is not an expression (*)

A non-void method has a return value, and the
method call is an expression whose value is the
returned value

* Technically not quite true – void is a type, whose sole value is also called void. Some
languages call the type void by the name Unit. Its only role in Java is as the return type
specification of methods which do not return a value.

Ac
ce

ss
or

m
et

ho
d:

 g
et

tin
g

a
va

ria
bl

e’
s

va
lu

e

A method which returns the value of an
instance variable

Allows us to grant READ access to the
contents of a variable which itself is PRIVATE.

Accessor method
(a simple example to show the mechanics of defining a non-void method)

public class Farm {
private example1.BarnYard _t;
public Farm() {

_t = new example1.BarnYard();
}
public example1.BarnYard getBarnYard() {

return _t;
}

}

Return type specification is the type of the returned
value, example1.BarnYard in this case.
public class Farm {

private example1.BarnYard _t;
public Farm() {

_t = new example1.BarnYard();
}
public example1.BarnYard getBarnYard() {

return _t;
}

}

