
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6 



RO
AD

M
AP

Last time
Interfaces
Realization relationship

Today
Graphics
Event handling

Coming up
Primitives
Control structures

© Dr. Carl Alphonce



© Dr. Carl Alphonce

REVIEW



PO
LY

M
O

RP
H

IS
M

INTERFACE

CLASS CLASS



C
on

cr
et

e 
ex

am
pl

e public class EventHandler implements ActionListener {

@Override
public void actionPerformed(ActionEvent e) {

System.out.println(“Button clicked”);
}

}



Ty
pe

s

When you define a class, you are defining a 
type.

When you define an interface, you are also 
defining a type.

A class which implements an interface is a 
SUBTYPE of the interface type.

an instance of the class belongs to both types



As
si

gn
m

en
t

If a variable is declared to be of an interface type (e.g. IType), 
it can be assigned an instance of any subtype class (e.g. C1):

public class C1 implements IType {…}
public class C2 implements IType {…}

IType var; 
var = new C1 (); // C1 is a subtype of IType
var = new C2 (); // C2 is a subtype of IType



© Dr. Carl Alphonce

MOVING ON



Po
in

t o
f v

ar
ia

tio
n

If a variable is declared to be of an interface type (e.g. IType), 
it can be assigned an instance of any subtype class (e.g. C1):

public class C1 implements IType {…}
public class C2 implements IType {…}

IType var; 
var = new C1 (); // C1 is a subtype of IType
var = new C2 (); // C2 is a subtype of IType

var now is a point of variation in the code.
A method call on var is polymorphic: the 
outcome depends on definition of method in 
the subtypes of IType (i.e. C1 and C2)



M
et

ho
d 

re
st

ric
tio

ns
The declared type of a variable, not the actual type of the 
object the variable refers to, determines WHICH methods 
can be called on the object.

The actual type of the object on which a method is called, 
rather than the declared type of the variable, determines the 
behavior (the code executed).

We’ll have more to say about this when we discuss the 
inheritance relationship.



© Dr. Carl Alphonce

Graphical User Interface
(GUI)



U
si

ng
 th

e 
Ja

va
 g

ra
ph

ic
s 

cl
as

se
s

In these slides we will explain the basics of how to create 
graphical programs.

Some advanced issues will be glossed over (e.g. thread 
safety, graphics library design).



G
ra

ph
ic

al
 e

le
m

en
ts

There are two basic types of graphical elements:

Containers
able to hold graphical
objects, such as
containers and components

Components
must be put into containers
able to generate events when manipulated

JFrame

JButton



C
on

ta
in

er
s

Top-level containers
some containers are called “top-level” because they do not need to 
be placed inside any other containers

JFrame is a top-level container, meaning it can exist independently; a 
JFrame draws a window, complete with a title bar, scroll-bar, resize 
controls, etc.

Other containers (not top-level)
most containers must be placed inside some other container
javax.swing.JPanel is an example



ja
va

x.
sw

in
g.

JF
ra

m
e

Top-level containers have multiple panes

image credit: http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html



Ad
di

ng
 e

le
m

en
ts

 to
 a

 J
Fr

am
e

We will add components to the content pane.

With javax.swing.JFrame, two ways:
call getContentPane() on frame to get frame’s content pane, then 
call add(…) on content pane to add a component
call add(…) directly on the JFrame object

Second approach is just a convenience method, does the 
same thing the first approach.



Ex
am

pl
e

Creating just a frame
new javax.swing.JFrame()

Creating a frame with a title
new javax.swing.JFrame(“My title”)

Making the frame visible
call setVisible(true) on the frame

Making application close when window is closed:
call setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) on the 
frame



Ex
am

pl
e

Creating just a frame
new javax.swing.JFrame()

Creating a frame with a title
new javax.swing.JFrame(“My title”)

Making the frame visible
call setVisible(true) on the frame

Making application close when window is closed:
call setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) on the 
frame

true is a value of 
the (primitive) type

boolean.



Li
ve

 c
od

in
g

See code in graphics package of 
LectureCode project:

© Dr. Carl Alphonce


