
CSE115 / CSE503
Introduction to Computer Science I
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Last time
Interfaces
Realization relationship

Today
Graphics
Event handling

Coming up
Primitives
Control structures
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@Override
public void actionPerformed(ActionEvent e) {

System.out.println(“Button clicked”);
}

}
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When you define a class, you are defining a 
type.

When you define an interface, you are also 
defining a type.

A class which implements an interface is a 
SUBTYPE of the interface type.

an instance of the class belongs to both types
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If a variable is declared to be of an interface type (e.g. IType), 
it can be assigned an instance of any subtype class (e.g. C1):

public class C1 implements IType {…}
public class C2 implements IType {…}

IType var; 
var = new C1 (); // C1 is a subtype of IType
var = new C2 (); // C2 is a subtype of IType
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MOVING ON
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If a variable is declared to be of an interface type (e.g. IType), 
it can be assigned an instance of any subtype class (e.g. C1):

public class C1 implements IType {…}
public class C2 implements IType {…}

IType var; 
var = new C1 (); // C1 is a subtype of IType
var = new C2 (); // C2 is a subtype of IType

var now is a point of variation in the code.
A method call on var is polymorphic: the 
outcome depends on definition of method in 
the subtypes of IType (i.e. C1 and C2)
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The declared type of a variable, not the actual type of the 
object the variable refers to, determines WHICH methods 
can be called on the object.

The actual type of the object on which a method is called, 
rather than the declared type of the variable, determines the 
behavior (the code executed).

We’ll have more to say about this when we discuss the 
inheritance relationship.
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Graphical User Interface
(GUI)
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In these slides we will explain the basics of how to create 
graphical programs.

Some advanced issues will be glossed over (e.g. thread 
safety, graphics library design).
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There are two basic types of graphical elements:

Containers
able to hold graphical
objects, such as
containers and components

Components
must be put into containers
able to generate events when manipulated

JFrame

JButton
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Top-level containers
some containers are called “top-level” because they do not need to 
be placed inside any other containers

JFrame is a top-level container, meaning it can exist independently; a 
JFrame draws a window, complete with a title bar, scroll-bar, resize 
controls, etc.

Other containers (not top-level)
most containers must be placed inside some other container
javax.swing.JPanel is an example
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Top-level containers have multiple panes

image credit: http://docs.oracle.com/javase/tutorial/uiswing/components/toplevel.html
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We will add components to the content pane.

With javax.swing.JFrame, two ways:
call getContentPane() on frame to get frame’s content pane, then 
call add(…) on content pane to add a component
call add(…) directly on the JFrame object

Second approach is just a convenience method, does the 
same thing the first approach.
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Creating just a frame
new javax.swing.JFrame()

Creating a frame with a title
new javax.swing.JFrame(“My title”)

Making the frame visible
call setVisible(true) on the frame

Making application close when window is closed:
call setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) on the 
frame
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Creating just a frame
new javax.swing.JFrame()

Creating a frame with a title
new javax.swing.JFrame(“My title”)

Making the frame visible
call setVisible(true) on the frame

Making application close when window is closed:
call setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) on the 
frame

true is a value of 
the (primitive) type

boolean.
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See code in graphics package of 
LectureCode project:
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