
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

RO
AD

M
AP

Last time
Graphics
Event handling

Today
Primitives
Control structures

Coming up
Collections

© Dr. Carl Alphonce

© Dr. Carl Alphonce

ANNOUNCEMENT

LA
PT

O
P

On Wednesday this week, bring a laptop with
Eclipse and the WebCAT submitter installed
to class.

We will be doing paired coding exercises in
lecture.

If you do not have a laptop you can bring, you
will be paired up with a student who has one.

© Dr. Carl Alphonce

© Dr. Carl Alphonce

REVIEW

Li
ve

 c
od

in
g

re
su

lt
package graphics;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;

public class Application {
public Application() {

JFrame window;
window = new JFrame("Our very first graphical program");
window.setVisible(true);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JButton b;
b = new JButton("Click me");
window.add(b);
ActionListener x;

x = new EventHandler();
b.addActionListener(x);

}
}

Li
ve

 c
od

in
g

re
su

lt
package graphics;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class EventHandler implements ActionListener {

public EventHandler() {
}

@Override
public void actionPerformed(ActionEvent e) {

System.out.println("Oh stop that!");
}

}

© Dr. Carl Alphonce

MOVING ON

Ev
en

t H
an

dl
in

g
ActionListener objects can serve as event
handlers for JButtons.

An ActionListener object must be associated
with a JButton to play this role:

JButton b = new JButton("Click me!");
ActionListener e = new EventHandler();
b.addActionListener(e);

© Dr. Carl Alphonce

A
co

m
po

ne
nt

: J
Bu

tto
n

A JButton is a component which can react to
mouse clicks.

Ev
en

ts
Clicks on buttons, mouse movements, etc.
are all considered events.

A program can react to events by setting up
event handlers.

An event handler defines what should happen
when a particular event occurs.

Ev
en

t h
an

dl
in

g
–

1

The component which gives rise to an event
is decoupled from the part of the code that
handles the event.

This is called the observer pattern.

General form:
http://www.ibm.com/developerworks/java/tutorials/j-patterns/j-patterns.html
http://www.oodesign.com/observer-pattern.html
http://en.wikipedia.org/wiki/Observer_pattern

Ev
en

t h
an

dl
in

g
–

2
Observer pattern in Java

An observer is called a listener in Java

Button clicks are “ActionEvents”.

Handlers for ActionEvents are ActionListeners.

An event-generator can have many listeners

Use “addActionListener” method to register a
listener with a component

© Dr. Carl Alphonce

PRIMITIVES
(and odds and ends)

Br
ie

f d
et

ou
r:

pr
im

iti
ve

s
To this point we have seen only so-called reference types,
types whose values are accessed via a reference.

Reference types:
classes
interfaces

Java also has an inventory of so-called primitive types.
so-called because their values are atomic (they have no accessible
internal structure)

pr
im

iti
ve

s
The value of a primitive type is not an object:

primitives have no instance variables
methods cannot be called on primitives

The value of a primitive type is stored directly in a variable.

Primitive values can be expressed using literals (see next two
slides).

pr
im

iti
ve

 ty
pe

: b
oo

le
an

the boolean type has two values, true and
false

boolean operators: && (and), || (or) and ! (not)

examples:
boolean x; // declaration
x = true; // assignment
boolean y = false; // combined
boolean z = x && y; // using && operator

P Q P && Q P || Q !Q

true true true true false

true false false true true

false true false true -

false false false false -

pr
im

iti
ve

 ty
pe

: i
nt

the int type includes integral values in a given range (we’ll
return to this in a later lecture): 0, +1, -1, +2, -2, …

int operators:
+, integer addition (operator type is int × int à int)
–, integer subtraction (operator type is int × int à int)
*, integer multiplication (operator type is int × int à int)
/, integer division (quotient) (operator type is int × int à int)
%, integer remainder (operator type is int × int à int)

examples:
int x = 5;
int y = 3;
int q = x / y; // q has value 1
int r = x % y; // r has value 2

// note: x = q * y + r

O
dd

s
an

d
en

ds
 re

vi
ew The next several slides review some odds

and ends, some of which were discussed in
lab 5 as well.

im
po

rt
An import is used to allow unqualified use of a name which would
otherwise need to be fully qualified

form: import <fully qualified name> ;

examples:
import java.awt.GridLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;

These examples allow the names GridLayout, JButton, JFrame and Jlabel
to be used without full qualification. This improves both the writability
and readability of code.

ja
va

.la
ng

pa
ck

ag
e

The java.lang package is special in that its elements are all
imported by default.

java.lang.System
java.lang.String

ja
va

.la
ng

.S
tri

ng
String is a class.

String is special – we can create instances with a special
syntax: a sequence of characters enclosed in double quotes:

“This is a String”
“So it this”

String objects are immutable.
the contents of a String cannot be changed

St
rin

g
co

nc
at

en
at

io
n

‘+’ is the name of the String concatenation operator

‘+’ is a binary operator, meaning it takes two arguments (also called
operands)

‘+’ is an infix operator, meaning it is written between its two arguments

“Hi” + “there” is an expression whose value is a new String object
“Hithere”.

“The answer is ”+17 is an expression whose value is “The answer is 17”.
The int expression 17 is converted to a textual equivalent, the String “17”
(which consists of the two characters ‘1’ and ‘7’)

st
at

ic
 m

em
be

rs
:

m
et

ho
ds

 a
nd

 v
ar

ia
bl

es
static methods

a static method is invoked on a class, rather than an object
a static method has no access to instance variables
its invocation record has no ‘this’

static variables
a static variable is accessed via a class, rather than an object
a static variable is often declared ‘public’
a static variable is often given a name of all upper-case letters,
as in java.awt.Color.RED

m
ai

n
m

et
ho

d
public static void main(String[] args) {

…
}

main method is standard entry point for a Java program

main method is invoked by Java runtime system

static
reserved word
indicates member is associated with CLASS not INSTANCE

parameter of main
square brackets are special syntax used with arrays

we will discuss arrays at start of CSE116
the parameter ‘args’ is initialized with ‘command line arguments’ –
arguments given on the command line when the program is run

Sy
st

em
.o

ut
.p

rin
tln

The System class is defined in the java.lang package.

The name ‘System’ can therefore be used in an unqualified way, even
without an explicit import directive.

‘out’ is a public and static variable of the System class, whose type is
PrintStream

The ‘PrintStream’ class defines a static method named ‘println’

‘println’ accepts an argument of any type, and prints a textual
representation of the argument on the console (see the output in the
console view if running in Eclipse, or the terminal window from which the
program was started if running outside of Eclipse).

