
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

RO
AD

M
AP

Last time
Iterators
Inheritance
Coding Exercise

Today
Inheritance
Coding Exercise

Coming up
Inheritance
int representation in detail

© Dr. Carl Alphonce

© Dr. Carl Alphonce

ANNOUNCEMENTS

EX
AM

 2
 N

O
TI

C
E

DATE: Tuesday November 15
TIME: 8:45 PM – 9:45 PM
LOCATION: as for exam 1
COVERAGE:

lecture material from 9/26 up to and including 11/04
lab material labs 4 – lab 9
readings: all assigned up to and including 13.4

HAVE A CONFLICT?
Send e-mail with PDF of documentation.
Subject line: [CSE115] Exam 2 conflict documentation

BRING: your UB card
NO ELECTRONICS: cell phone, calculator, etc.

© Dr. Carl Alphonce

U
TA

 O
FF

IC
E

H
O

U
RS

We are working on the office hour change.

Stay tuned!

© Dr. Carl Alphonce

Ex
er

ci
se

 s
ol

ut
io

ns
Solutions to the exercises are in the repo:

Exercise-01
Exercise-02
Exercise-03
Exercise-04
Exercise-05

Ignore these – they’re unrelated – we never used
them:

Exercise-01-A
Exercise-01-B

© Dr. Carl Alphonce

© Dr. Carl Alphonce

Tomorrow
(Tuesday, November 8)

is
ELECTION DAY

Get out and VOTE!
Make YOUR voice heard!

© Dr. Carl Alphonce

REVIEW

or
ig

in
al

 d
es

ig
n

cl
as

s
to

 c
la

ss
 in

he
rit

an
ce

 I

cl
as

s
to

 c
la

ss
 in

he
rit

an
ce

 II

Code duplication
a “code smell”

package noninheritance;

public class Cat implements Noisy {

private String _myName;

public Cat(String n) {
_myName = n;

}

@Override
public String getName() {

return _myName;
}

@Override
public String sound() {

return "meow";
}

}

package noninheritance;

public class Dog implements Noisy {

private String _myName;

public Dog(String n) {
_myName = n;

}

@Override
public String getName() {

return _myName;
}

@Override
public String sound() {

return ”ruff";
}

}

Refactored code
(-: a breath of fresh air :-)

public class Cat extends Noisy{
public Cat(String n) {

super(n);
}
@Override
public String sound() {

return "meow";
} }

public class Dog extends Noisy{
public Dog(String n) {

super(n);
}
@Override
public String sound() {

return ”ruff";
} }

public abstract class Noisy {
private String _myName;
public Noisy(String name) {

_myName = name;
}
public abstract String sound();
public String getName() {

return _myName;
} }

© Dr. Carl Alphonce

EXERCISE 06

© Dr. Carl Alphonce

PAIR CODING EXERCISE
Define a class quiz.Question. In this class define a

method named answer.

Define this method so that it returns a count of all
the elements of its argument, an ArrayList<String>,
that have length 3. If the argument is null, return 0.

Submit to Exercise-06 in Web-CAT – enter the
usernames of everyone in your group!

Submit no later than 6:00 PM tomorrow (11/8).

© Dr. Carl Alphonce

INHERITANCE

in
he

rit
an

ce

In Java inheritance can take place between

two interfaces

or

two classes

in
te

rfa
ce

 in
he

rit
an

ce

In Java, an interface can extend zero or more
interfaces:

extending zero interfaces
public interface A { public void foo(); }

extending one interface
public interface B extends A { public void bar(A a); }

extending many interfaces
public interface C extends B, ActionListener {

public ActionEvent getEvent();
}

im
pl

em
en

ts
 c

la
us

e

A class can implement an arbitrary number of
interfaces.

implements clause examples

public final class String

implements java.io.Serializable, Comparable<String>, CharSequence

public abstract class Expression
implements java.io.Serializable, ExpressionNode, XPathVisitable

O
bj

ec
t

The class Object is pre-defined in the language.

Object does not extend any class, and is the only class that
does not have a parent class.

Any class (other than Object) which does not have an explicit
‘extends’ clause in its header extends Object by default.

Note the distinction between Object (‘capital-O Object’),
which is a class, and object (‘little-o object’), which refers to
an instance of a class.

ty
pe

 v
s

cl
as

s
hi

er
ar

ch
y

type hierarchy vs. class hierarchy
class: single root – Object
type: many roots

All instantiable types (concrete classes) fall under
Object.

This means all objects (class instances) are of type
Object.

cl
as

s
hi

er
ar

ch
y

vs
. t

yp
e

hi
er

ar
ch

y
Since both classes and interfaces define types, the class
hierarchy is a sub-hierarchy of the type hierarchy.

The class hierarchy has a single root (Object).

The type hierarchy does not have a single root (since any
interface which does not extend another interface is a root).

in
te

rfa
ce

 in
he

rit
an

ce
, c

on
t’d

When an interface A extends another interface B, A inherits
the methods specified by B.

This means that a class which implements A must define all
the methods specified in both A and B.

An interface can have at most one specification for any given
method: even if an interface inherits the very same method
specification (same name, same parameter list) from two or
more parent interfaces, the interface has the method
specified just once.

Im
pl

ic
at

io
ns

 o
f “

ex
te

nd
s” Same type implications as for interfaces:

instance of subclass belongs to subclass type and
superclass type

inheritance: non-private members of superclass can
be accessed via subclass object.

e.g. it’s as if methods of superclass were defined in
subclass

cl
as

s
(im

pl
em

en
ta

tio
n)

 in
he

rit
an

ce

A (user-defined) class always extends exactly one
(other) class:

public class Circle extends Shape {…}

If class header has no explicit extends clause,
parent class is implicitly Object:

public class Shape {…}
public class Shape extends Object {…}

Object is the root of Java’s class hierarchy.

W
ha

t i
s

in
he

rit
ed

?
Given what we know, a correct answer is that
anything that is not private is inherited.

All our properties (instance variables) are private, so
they are not inherited.

All our methods are public (not private), so they are
inherited.

W
ha

t i
s

ef
fe

ct
 o

f i
nh

er
ita

nc
e? A method inherited from a superclass to a subclass can be

invoked on a subclass instance, even though not defined
there:

public class Foo {
private Bar _bar;
public void setBar(Bar b) {

_bar = b;
}

}
public class FooSub extends Foo {

…
}

This is legal:
new FooSub().setBar(new Bar())

im
pl

ic
at

io
ns

 o
f t

he
 t

yp
e

hi
er

ar
ch

y hierarchy of types
implementation (class to interface)
inheritance (class to class, interface to interface)

assignment
variable of type T can be assigned a value of type S

where S and T are the same type
where S is a subtype of T

members
where S is a subtype of T, all non-private members of both S and T are
accessible on an instance of S

declared vs. actual type
using a variable of type T, only methods defined for T may be called, even if
object referred to has additional methods
when a method is called using a reference whose type is T, but which refers
to an object of type S (S a subtype of T), the definition for S is used. Essence
of POLYMORPHISM

ov
er

rid
in

g
When it comes to methods defined in a
superclass, a subclass has options:

inherit

totally override

partially override

© Dr. Carl Alphonce

ov
er

rid
in

g
When it comes to methods defined in a
superclass, a subclass has options:

inherit
provide no definition in subclass,
accept definition from superclass

© Dr. Carl Alphonce

ov
er

rid
in

g
When it comes to methods defined in a
superclass, a subclass has options:

totally override
completely reject definition in superclass
provide entirely new definition in subclass

© Dr. Carl Alphonce

ov
er

rid
in

g
When it comes to methods defined in a
superclass, a subclass has options:

partially override
call superclass method, and
provide additional code in subclass

© Dr. Carl Alphonce

sa
m

pl
e

co
de

(see examples in LectureCode repository,
inheritance pacakge)

© Dr. Carl Alphonce

