
CSE115 / CSE503
Introduction to Computer Science I

Dr. Carl Alphonce
343 Davis Hall

alphonce@buffalo.edu

Office hours:
Tuesday 10:00 AM – 12:00 PM*

Wednesday 4:00 PM – 5:00 PM
Friday 11:00 AM – 12:00 PM

OR request appointment via e-mail
*Tuesday adjustments: 11:00 AM – 1:00 PM on 10/11, 11/1 and 12/6

RO
AD

M
AP

Last time
Inheritance

Today
Inheritance
int representation in detail

Coming up
floating point representation
search

© Dr. Carl Alphonce

© Dr. Carl Alphonce

ANNOUNCEMENTS

EX
AM

 2
 N

O
TI

C
E

DATE: Tuesday November 15
TIME: 8:45 PM – 9:45 PM
LOCATION: as for exam 1
COVERAGE:

lecture material from 9/26 up to and including 11/04
lab material labs 4 – lab 9
readings: all assigned up to and including 13.4

HAVE A CONFLICT? Let me know by tonight
Send e-mail with PDF of documentation.
Subject line: [CSE115] Exam 2 conflict documentation

BRING: your UB card
NO ELECTRONICS: cell phone, calculator, etc.

© Dr. Carl Alphonce

© Dr. Carl Alphonce

REVIEW

in
he

rit
an

ce
interface-interface and class-class inheritance

the class Object

single inheritance

inheritance/partial overriding/total overriding

super

© Dr. Carl Alphonce

INHERITANCE

ov
er

rid
in

g
su

m
m

ar
y

total (complete) overriding
a subclass provides an entirely new definition for a method which
would otherwise have been inherited from the superclass

partial overriding
a subclass provides a definition for a method which would otherwise
have been inherited from the superclass, but calls the superclass
version via super.

inheritance
a subclass does not provide an alternate defintion for a method
defined in the superclass, which is inherited.

CODE

public class A {
private int _x;
public A(int x) {
_x = x;

} }
public class B extends A {
private double _y;
public B(double y) {
_y = y;

} }

MEMORY for new B()

M
em

or
y

fo
r w

ho
le

 o
bj

ec
t

M
em

or
y

fo
r

B
pa

rt
of

 o
bj

ec
t

M
em

or
y

fo
r

A
pa

rt
of

 o
bj

ec
t

M
em

or
y

fo
r

O
bj

ec
t

pa
rt

of
 o

bj
ec

t

object layout in memory
When a class is instantiated, memory is reserved for the whole object, including parts

contributed by ancestor classes.

more constructor chaining
public class A {
private int _x;
public A(int x) {

_x = x;
}

}

public class B extends A {
private double _y;
private boolean _z;

public B() {
this(1.0, false);

}
public B(double d, boolean b) {
super(5);
_y = d;

_z = b;
}

}

When creating an instance of B, we
have a choice of which constructor to
use.

Using the second constructor we can
specify the initial values of the
instance variables by passing
arguments.

This constructor calls the
superclass’s constructor.

more constructor chaining
public class A {
private int _x;
public A(int x) {

_x = x;
}

}

public class B extends A {
private double _y;
private boolean _z;

public B() {
this(1.0, false);

}
public B(double d, boolean b) {
super(5);
_y = d;

_z = b;
}

}

When creating an instance of B, we
have a choice of which constructor to
use.

Using the first constructor “default”
values are provided for the two
instance variables; their values are
set by the second constructor, which
is called from the first (the
‘this(1.0,false)’ call).

The second constructor explicitly
calls the superclass constructor with
argument 5 (the super(5) call).

ov
er

lo
ad

in
g

Defining more than one constructor for a class is an example of
overloading

In general, a name can be overloaded with multiple definitions, as long as
the correct interpretation of the name can be determined by the compiler
from context.

Methods/constructors can be overloaded as long as the name can be
disambiguated based on the call.

For methods/constructors disambiguation is carried out based on the
number, type and order of parameters.

For example, you cannot define two methods with the same name and
the same parameter lists.

The return type is not considered when trying to disambiguate a call.

de
fa

ul
t c

on
st

ru
ct

or
If no explicit constructor is defined for a class, the compiler
provides one.

This “default” constructor takes no arguments (i.e. it has an
empty parameter list) and an empty body.

de
fa

ul
t c

on
st

ru
ct

or
public class A {
}

de
fa

ul
t c

on
st

ru
ct

or
public class A {

public A() {
}

}

de
fa

ul
t c

on
st

ru
ct

or
public class A {

public A() {
super();

}
}

co
ns

tru
ct

or
 c

ha
in

in
g

Any constructor which does not explicitly call a superclass
constructor implicitly invokes the no-argument constructor of
the superclass.

An explicit invocation of a superclass constructor is done
using ‘super’.

The first statement in a constructor must be a call to a
constructor. Often this call is to a superclass constructor,
but it can be to another constructor of the same class. We’ll
see an example a few slides from now.

From JLS 7, page 247

The first statement of a constructor body may be an explicit
invocation of another constructor of the same class or of the
direct superclass (§8.8.7.1).

If a constructor body does not begin with an explicit constructor
invocation and the constructor being declared is not part of the
primordial class Object, then the constructor body implicitly
begins with a superclass constructor invocation "super();", an
invocation of the constructor of its direct superclass that takes no
arguments.

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8.7.1

su
bt

le
 e

rro
rs

The compiler injects a default constructor into a class
definition ONLY if there is no explicit constructor defined.

Therefore, defining an explicit constructor with a non-empty
parameter list in superclass which previously had a default
constructor will cause errors in subclass constructors (since
they rely on a call (implicit or explicit) to a no-
argument/default constructor, which no longer exists)

Ec
lip

se
 d

em
on

st
ra

tio
n

See code in lecture code
project in student repository.

