
DUE DATES:

Monday recitations: 9:00 PM on 10/2
Wednesday recitations: 9:00 PM on 10/4
Thursday recitations: 9:00 PM on 10/5
Friday recitations: 9:00 PM on 10/6
Saturday recitations: 9:00 PM on 10/7

Ready!

In this lab you will use the Java you have learned in lecture to write a small program. In particular you will:

- define classes
- declare local variables
- declare instance variables (**NEW!**)
- create objects
- assign values to local variables
- initialize instance variables in a constructor (**NEW!**)
- call methods
- define methods (**NEW!**)

If you are unsure how to do these things you should review your lecture notes, slides posted on the course website, and readings from the textbook.

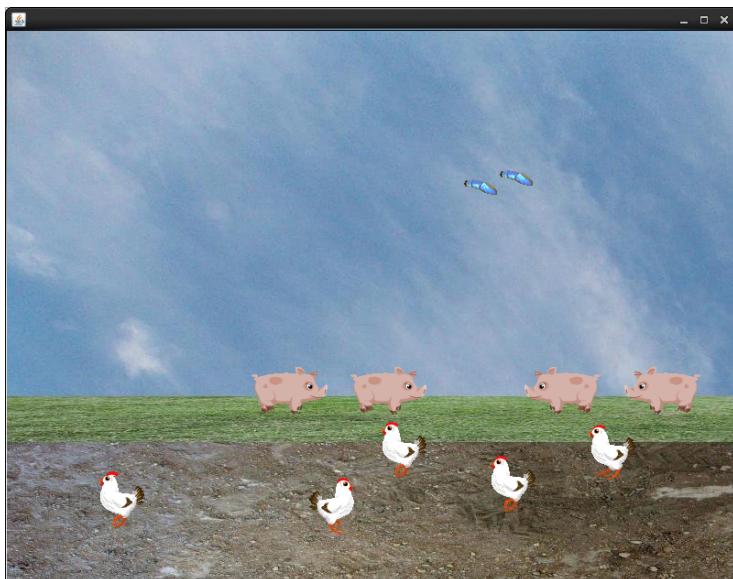
Set!

1. Log in
2. Start Eclipse
3. Switch to the CVS Repository Exploring perspective
4. Check out the CSE115-Lab3 project from the Labs repository
5. Switch to the Java perspective

Go!

In this lab you will write several small programs which, when run, create one or more BarnYards and add critters to them. Do all three parts. Part 1 begins on the next page.

Part 1


Edit the definition of the Farm class in the part1 package to do the following:

- a) Declare an instance variable of type example1.BarnYard.
- b) Initialize the instance variable to a new example1.BarnYard instance.
- c) Define a void and parameterless method named addOneMovingChicken which creates an example1.Chicken object, adds it to the BarnYard, and starts it moving.
- d) Define a void and parameterless method named addOneMovingPig which creates an example1.Pig object, adds it to the BarnYard, and starts it moving.
- e) Define a void and parameterless method named addOneMovingButterfly which creates an example1.Butterfly object, adds it to the BarnYard, and starts it moving.

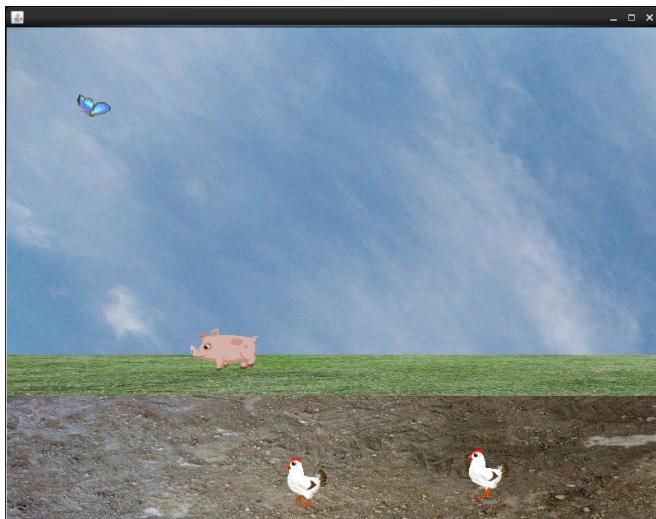
Edit the definition of the Tester class in the part1 package to do the following:

Create, in the constructor, a new part1.Farm object and call the addOneMovingChicken method five times (thereby adding five moving Chickens to the Farm's BarnYard object), call the addOneMovingPig method four times (thereby adding four moving Pigs to the Farm's BarnYard object), and finally call the addOneMovingButterfly method twice (thereby adding two moving Butterflies to the Farm's BarnYard object),

You are expecting that a window will open on the screen, displaying an image inside it, like this:

You might recognize this picture - it is from part 5 of lab 2. You've now accomplished the same thing you did at the end of lab 2, but with a bit more code. With the Farm class defined in this way we can go on (in parts 2 and 3) to do some more interesting things!

Part 2

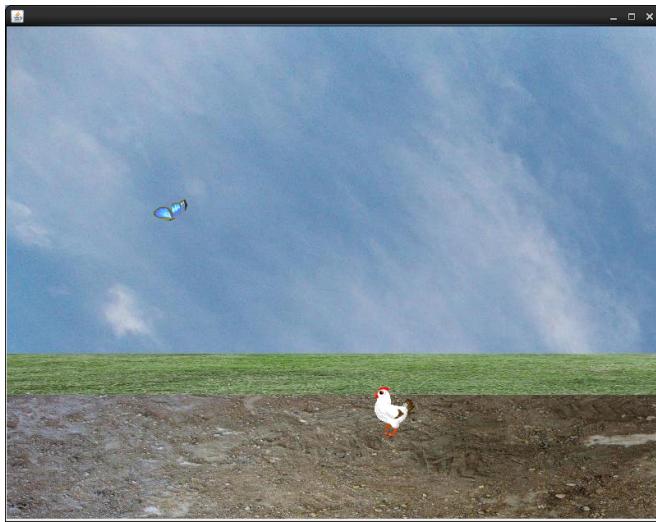


In this part you will use two Farm objects to create a MidSizedFarm object. The special property of the MidSizedFarm is that when animals are added to it they alternate which of the two Farms they go into.

Edit the definition of the MidSizedFarm class in the part2 package to do the following:

- f) Declare two instance variables of type part1.Farm. Let's call them _farm0 and _farm1.
- g) Initialize each of the instance variables to a new part1.Farm instance.
- h) Define a void and parameterless method named addChickenAlternating which adds a moving chicken to the Farm referred to by _farm0 (by calling the addOneMovingChicken method), and then interchanges the values of _farm0 and _farm1. Your TA will explain how to do this. [For those with some prior programming experience: you may NOT use any kind of conditional.]
- i) Define a void and parameterless method named addPigAlternating analogously.
- j) Define a void and parameterless method named addButterflyAlternating analogously.

Edit the definition of the Tester class in the part2 package to do the following:

Create, in the constructor, a new part2.MidSizedFarm object and call the addChickenAlternating method three times, then the addPigAlternating method two times, and finally call the addButterflyAlternating method three times.


Part 3

In this part you will use three Farm objects to create a *MegaFarm* object. The special property of the *MegaFarm* is that when animals are added to it they rotate through which of the three Farms they go into. (You can think of the *MidSizedFarm* as rotating through the two Farms.)

Edit the definition of the *MegaFarm* class in the part3 package to do the following:

- k) Declare three instance variables of type part1.Farm. Let's call them _farm0, _farm1, and _farm2.
- l) Initialize each of the instance variables to a new part1.Farm instance.
- m) Define a void and parameterless method named addChickenRotating which adds a moving chicken to the Farm referred to by _farm0 (by calling the addOneMovingChicken method), and then rotates the values of _farm0, _farm1 and _farm2. Your TA will explain how to do this. [For those with some prior programming experience: you may NOT use any kind of conditional.]
- n) Define a void and parameterless method named addPigRotating analogously.
- o) Define a void and parameterless method named addButterflyRotating analogously.

Edit the definition of the Tester class in the part3 package to do the following:
Create, in the constructor, a new part3.MegaFarm object and call the addChickenRotating method three times, then the addPigRotating method two times, and finally call the addButterflyRotating method three times.

Submitting your project to Web-CAT

Make sure you submit your work on time; due dates are listed at the beginning of this lab description. This lab will be automatically graded by Web-CAT, using not only the code you wrote but also some additional tests that your instructor wrote. You may submit as many times as you wish. Your last submission is the one that counts (so consider carefully whether you want to make any late submissions, as the late penalty is 20 points per day or portion thereof late).
