
A strategy for designing greedy algorithms and proving optimality∗

Hung Q. Ngo

This document outlines a strategy for designing greedy algorithms and proving their optimality. I illus-
trated the strategy with two examples in the lectures on Monday and Wednesday. We will begin with the
INTERVAL SCHEDULING problem, then the generic description of the strategy, and finally the HUFFMAN

CODING example.

1 The INTERVAL SCHEDULING problem

In the INTERVAL SCHEDULING problem, we are given a set R of n intervals [si, fi), 1 ≤ i ≤ n. We are
supposed to output a maximum-size subset of R that are mutually non-overlapping.

Our algorithm A takes R as input and outputs A(R) – a subset of non-overlapping intervals. The
algorithm is a recursive one:

(1) let I ∈ R be the interval with earliest finish time (i.e. smallest fi),

(2) let R′ be the set of intervals which do not overlap with I

(3) return {I} ∪A(R′)

The hard part is to prove that the algorithm returns a best solution possible. Let OPT(R) denote the
maximum number of non-overlapping intervals in R. We want to show that A(R) = OPT(R), for all
R. We will prove this by induction on |R|. The base case when |R| = 1 obviously holds. Suppose
A(R) = OPT(R), for all input interval set R with at most n− 1 intervals in it.

Consider an input R with n intervals. From the recursive structure of the algorithm, it is easy to see that

A(R) = 1 + A(R′).

By the induction hypothesis, we have
A(R′) = OPT(R′)

Thus,
A(R) = 1 + OPT(R′).

Consequently, we would be in business if we can prove that

OPT(R) = 1 + OPT(R′). (1)

We will prove (1) by proving two claims.
∗Notes based on Hung Ngo’s guest lectures in Fall 09 version of CSE 331.
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Claim 1.1. There exists an optimal solution O for the instance R (i.e. a set of non-overlapping intervals for
which |O| = OPT(R)) such that I ∈ O.

Claim 1.2. Let O be the optimal solution in the previous claim. Let O′ = O−{I}. Then, O′ is optimal for
the instance R′; namely |O′| = OPT(R′).

Before proving the two claims, let’s assume they are true and prove (1) first. By Claim 1, we have
|O| = OPT(R). By Claim 2, we have |O′| = OPT(R′). But O = {I} ∪ O′. Thus, |O| = 1 + |O′|, which
implies (1) as desired. Now we prove the two claims.

Proof of Claim 1.1. Let Ō be any optimal solution to the instance R. If Ō contains I then we are done. If
not, let Ī be the interval in Ō with the earliest finish time. Since I was the interval with the earliest finish
time overall, I’s finish time is at least as early as Ī . Hence, I does not overlap with any interval in Ō− {Ī}.
Consequently, the set O = Ō ∪ {I} − {Ī} is a set of non-overlapping intervals. Since |O| = |Ō| and Ō is
optimal, O is optimal as well. And, O contains I as desired.

Proof of Claim 1.2. Suppose O′ is not optimal for the instance R′. Let Ō′ be any optimal solution to R′. In
particular, |Ō′| > |O′|. Recall that R′ consists of all intervals in R that do not overlap with I . This means
that non of the intervals in Ō′ overlaps with I either. Thus, Ō′ ∪ {I} is a set of non-overlapping intervals.
However,

|Ō′ ∪ {I}| = 1 + |Ō′| > 1 + |O′| = |O| = OPT(R).

This is a contradiction as there can be no set of non-overlapping intervals with size more than OPT(R).

2 A general greedy algorithm design strategy and its analysis

The above analysis of the recursive algorithm might seem convoluted at first read. However, it follows a
very clear algorithm design and proof strategy, which is the subject of this section.

2.1 The design strategy

Let us consider an instanceR of some optimization problem, in which we want to find a solution to minimize
or maximize something. In many cases, a solution can be built piece-by-piece, using a recursive structure
similar to the algorithm described in the previous section.

Generic Greedy Algorithm A on instance R
(1) Construct a “piece” I in a “greedy” manner.
(2) Define a sub-problem R′

(3) “Glue” I to A(R′) and output the result

You should try to compare the above generic description with the algorithm from Section 1. Here’s
another example with precisely the same structure. Given an input array a[1..n], sort the array in ascending
order. The famous bubble sort algorithm has the same structure:

(1) let e be the smallest element of a

(2) let a′ be the array a with element e removed
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(3) return e◦ bubble-sort(a′), where ◦ denotes the “concatenation” operation

An important point to notice here is that different problems typically require different ways to “glue” I to
A(R′). Sorting in ascending order can be formulated as the problem of minimizing the number of inversions
in the array, which we will encounter later.

2.2 The analysis

The cost of the final solution returned by A, denoted by A(R), can often be computed from the “cost” of
the piece I and the cost of the sub-solution A(R′):

A(R) = cost(I) + A(R′). (2)

In some problem, the cost is not “additive” as above. It could be the case that A(R) = cost(I) ·A(R′), or
some other way of computing A(R) from cost(I) and A(R′). However, we will use the “additive” case as
an illustration because it occurs most often in practice.

Our objective is to prove that A(R) = OPT(R). And, we often can do this by induction on |R|: the size
of the problem instance. By the induction hypothesis, we have A(R′) = OPT(R′). Thus, all we actually
have to do is to prove that

OPT(R) = cost(I) + OPT(R′). (3)

Note the parallel between (1) and (3). Now, we will prove (3) by proving two claims.

Claim 2.1 (Generic Claim 1). There exists an optimal solution O to the instance R which “contains” the
greedy choice I .

Claim 2.2 (Generic Claim 2). Given the O in Generic Claim 1, O′ = O − I (“cut off” I from O) is an
optimal solution to the instance R′

It is extremely important to note that the statements above are meaningless if they are not explicitly
stated in the context of a particular problem. See the section on INTERVAL SCHEDULING and HUFFMAN

CODING for concrete example. Our objective here is to outline the general line of reasoning only.
Now, after proving the two claims, we can prove (3) by noting that

OPT(R) = cost(O) = cost(I) + cost(O′) = cost(I) + OPT(R′).

The first equality holds because O is optimal for R. The second equality holds because O′ is O with I “cut
off.” The third equality holds due to Generic claim 2.

3 Huffman coding

Given a text file over some alphabet C in which letter c ∈ C occurs f(c) times, what is the best way to
encode this text file such that the total number of bits needed is minimized?

For example, suppose C has only 4 letters a, b, c, d. We can use 2 bits to encode each letter: 00 =
a, 01 = b, 10 = c, 11 = d. The text string “abbcccccccd” will thus need 11 · 2 = 22 bits. In 1951, David
Huffman, then a graduate student at MIT worked on a term paper whose topic was precisely this problem:
how to design the most efficient coding scheme for a given a text file/string. He came up with the Huffman
code. The idea is very simple: characters which appear more frequently in the text file should be encoded
with less bits.
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Huffman’s idea is as follows. An encoding scheme can be represented by a full binary tree, where each
leaf represents a character. For every internal node in the tree, mark the left branch with a 0, and the right
branch with a 1. The sequence of 0s and 1s encountered when we travel from the root to a leaf is the
encoding of the corresponding character. For instance, an encoding tree for the text string “abbcccccccd”
might be

*
0/ \1

* c
0/ \1

* b
0/ \1
a d

The encoding is thus 000 = a, 001 = d, 01 = b, 1 = c. It is not hard to see that we can uniquely decode
any string encoded using this method, which is called a “prefix code.” The total number of bits needed to
encode “abbcccccccd” is now only 17 instead of 22.

Given an encoding tree T , let dT (c) denote the depth of character c ∈ C in the tree T , then we need
dT (c) bits to encode c. Thus, a text file with character frequencies f(c) will need

cost(T ) =
∑
c∈C

f(c)dT (c)

many bits to be encoded. The problem is to seek a full encoding tree T minimizing its cost.
Huffman proposed the following algorithm, following precisely the strategy described in the previous

section. Initially, each character in C is an isolated node. No tree is formed yet, and they will be “merged”
gradually to form a full binary tree.

(1) Let c1 and c2 be two least frequently appeared characters in C. Create a new “fake” character c12.

(2) Define the frequency of c12 by f(c12) = f(c1) + f(c2). Let C′ = C ∪ {c12} − {c1, c2}.

(3) Let T ′ be the optimal encoding tree for the new character set C′ (with the frequency for c12 defined
above). T ′ is constructed recursively. To obtain T , join two nodes c1, c2 to the node c12 in T ′. (This
is how we “glue” the greedy choice to the sub-solution T ′.)
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Now, it’s easy to see that

cost(T ) =
∑
c∈C

f(c)dT (c)

=
∑

c∈C−{c1,c2}

f(c)dT (c) + f(c1)dT (c1) + f(c2)dT (c2)

=
∑

c∈C−{c1,c2}

f(c)dT (c) + f(c1)(dT ′(c12) + 1) + f(c2)(dT ′(c12) + 1)

=
∑

c∈C−{c1,c2}

f(c)dT (c) + f(c1)dT ′(c12) + f(c2)dT ′(c12) + f(c1) + f(c2)

=
∑

c∈C−{c1,c2}

f(c)dT (c) + (f(c1) + f(c2))dT ′(c12) + f(c1) + f(c2)

=
∑

c∈C−{c1,c2}

f(c)dT ′(c) + f(c12)dT ′(c12) + f(c1) + f(c2)

=
∑
c∈C′

f(c)dT ′(c) + f(c1) + f(c2)

= cost(T ′) + f(c1) + f(c2)

This is where I stopped on Wednesday!
The equality

cost(T ) = f(c1) + f(c2) + cost(T ′) (4)

plays the role of (2). Now, we prove two claims along the general line of reasoning.

Claim 3.1. There exists an optimal encoding tree T̄ for the instance C in which c1 and c2 are siblings.

Claim 3.2. Let T̄ be the optimal encoding tree from the previous claim. Let c12 be the parent of c1 and
c2. Let T̄ ′ be the tree T̄ with c1 and c2 removed. Then T̄ ′ is an optimal encoding tree for the sub problem
C′ = C ∪ {c12} − {c1, c2}, where f(c12) = f(c1) + f(c2).

Let’s assume the two claims are true. We want to prove that

cost(T ) = cost(T̄ ) which is the optimal cost for C.

We shall prove by induction on |C| that our algorithm always constructs an optimal encoding tree, which
certainly holds when |C| = 2. Let’s assume that our algorithm is optimal for |C| ≤ n− 1. Consider the case
when |C| = n. By an identical reasoning as above, we can show that

cost(T̄ ) = f(c1) + f(c2) + cost(T̄ ′).

By the induction hypothesis, we have cost(T ′) = cost(T̄ ′), because |C′| ≤ n− 1. This along with (4) give

cost(T̄ ) = f(c1) + f(c2) + cost(T ′) = cost(T )

as desired. Now, we prove the two claims.
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Proof of Claim 3.1. Let T̄ be any optimal solution for C. If c1 and c2 are siblings, then we are done. Other-
wise, without loss of generality, we assume that dT̄ (c1) ≥ dT̄ (c2) and that c is a sibling of c1. Let T ∗ be the
tree obtained from T̄ by switching the nodes c2 and c. Then, since everything else is the same except for c2

and c, we have

cost(T ∗)− cost(T̄ ) = (f(c2)dT ∗(c2) + f(c)dT ∗(c))− (f(c2)dT̄ (c2) + f(c)dT̄ (c))
= (f(c2)dT̄ (c) + f(c)dT̄ (c2))− (f(c2)dT̄ (c2) + f(c)dT̄ (c))
= (f(c2)− f(c))dT̄ (c) + (f(c)− f(c2))dT̄ (c2)
= (f(c2)− f(c))(dT̄ (c)− dT̄ (c2))
= (f(c2)− f(c))(dT̄ (c1)− dT̄ (c2))
≤ 0.

The last inequality follows because f(c2) ≤ f(c) (c2 was one of the two least frequent characters), and
dT̄ (c1) ≥ dT̄ (c2) by our assumption above. Since T̄ is already optimal, cost(T ∗) ≤ cost(T̄ ) implies that T ∗

must be optimal as well; moreover, c1 and c2 are siblings in T ∗ as we wanted to show.

Proof of Claim 3.2. Suppose T̄ ′ is not optimal for the problem C′. Then, there’s an even better encoding
tree T̂ ′ for the sub-problem C′: cost(T̂ ′) < cost(T̄ ′). Now, let T̂ be the tree obtained by “gluing” c1 and c2

to the parent node c12 in T̂ ′. Then,

cost(T̂ ) = f(c1) + f(c2) + cost(T̂ ′) < f(c1) + f(c2) + cost(T̄ ′) = cost(T̄ ).

This means that T̄ is not the best solution to the problem C, a contradiction.
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