
NAME:

CSE 331
Introduction to Algorithm Analysis and Design

Sample Final Exam Solutions

1. (5× 2 = 10 points) Answer True or False to the following questions. No justification
is required. (Recall that a statement is true only if it is logically true in all cases while
it is is false if it is not true in some case).

Note: I’m providing justifications for the questions below for your understanding. In
the actual exam for Q1, you of course only have to say True or false.

(a) Depth First Search (DFS) is a linear time algorithm.

True. The input graph can be represented as an adjacency list of total size
O(m + n). We saw in the lecture that DFS runs in time O(m + n) and thus, has
a linear running time.

(b) n is O
(
(log n)log n

)
.

True. Note that n = 2log n and (log n)log n = 2log log n·log n. Now the statement
follows as log n ≤ log log n · log n for large enough n.

(c) There is no algorithm that can compute the Minimum Spanning Tree (MST) of
a graph on n vertices and m edges in time asymptotically faster than O(m log n).

False. As I mentioned in the class, there exists algorithms to compute the MST
in time O(mα(m, n)), where α(m, n) is the inverse Ackerman function and is
asymptotically (much) smaller than log n. (This fact was also mentioned with Q2
in HW 8.)

(d) Let G be a graph with a negative cycle. Then there is no pair of vertices that has
a finite cost shortest path.

False. Consider a graph that has an edge (s, t) with cost 1 and a disjoint negative
cycle. In this graph the shortest s− t path has cost 1.

(e) Every computational problem on input size n can be solved by an algorithm with
running time polynomial in n.

False. There are many ways to show this is false, here is one. Consider the
problem, where given n numbers as input, the algorithm has to output all the
permutations of the n numbers. Since there are n! permutations that need to be
output, every algorithm for this problem runs in exponential time.

2. (5 × 6 = 30 points) Answer True or False to the following questions and briefly
JUSTIFY each answer. A correct answer with no or totally incorrect justification
will get you 2 out of the total 6 points. (Recall that a statement is true only if it is
logically true in all cases while it is is false if it is not true in some case).

(a) The following algorithm to check if the input number n is a prime number runs
in polynomial time.

1



For every integer 2 ≤ i ≤
√

n, check if i divides n. If so declare n to be
not a prime. If no such i exists, declare n to be a prime.

False. The run time of the algorithm is O(
√

n) but the input size is log n and
thus, the run time is exponential and not polynomial (in the input size).

(b) Let G = (V, E) be a directed graph with positive costs, i.e. ce ≥ 0 for every e ∈ E.
The following is true for every real number δ > 0. Consider the instance where
the input graph is still G but the costs are now c′e = ce + δ (for every e ∈ E).
Then for some distinct s, t ∈ V , the shortest s − t path in the two instances are
different.

False. Consider the graph with just one edge (s, t). Now no matter how the
weight of (s, t) is changed, the shortest s− t is always the edge (s, t).

(c) Every weighted graph has a unique Minimum Spanning Tree (MST).

False. Consider the “triangle” graph with all edge weights being 1. This graph
has three spanning trees all of which have weight 2.

(d) The weighted interval scheduling problem on n jobs can be solved in O(n) time.
True. We saw in the class a dynamic programming algorithm that runs in o(n)
time.

(Note: The above assumes that the jobs are sorted by their finish time (and the
p(·) values have been pre-computed). So if you say false and justify it by assuming
that the jobs are not sorted, then you will get full credit too.)

(e) Given n integers a1, . . . , an, the third smallest number among a1, . . . , an can be
computed in O(n) time.

True. Do a linear scan and remember the three smallest numbers seen so far.
Whenever you encounter a new number, one can figure out in constant time, if
it should displace any of the current three minimum guys. At the end of the
linear scan, output the third smallest number. (The running time is O(n) as the
algorithm spends only O(1) time per element.)

3. (5 + 15 = 20 points) In this problem you will show that the naive recursive algorithm
(that we saw in class) to compute the value of the optimal schedule for the weighted
interval scheduling problem takes exponential time.

(a) As a warmup, we will begin with a recurrence relation, that does not have any-
thing to do with the weighted interval scheduling per se. Consider the follow-
ing recurrence relation: F (0) = 0, F (1) = 1 and for every n ≥ 2, F (n) =
F (n− 1) + F (n− 2). Prove that F (n) ≥ (3/2)n−2. (Note that you have to prove
a lower bound.)

Hint: Use the guess and verify using induction technique of solving recurrences.

Solution: We will show by induction on n that F (n) ≥ (3/2)n−2. The inequality
is definitely true when n = 0, 1 or 2. For the inductive hypothesis, assume that
for every 0 ≤ i ≤ n − 1, we have F (i) ≥ (3/2)i−2. Now by the definition of the
recurrence, F (n) = F (n−1)+F (n−2). By the inductive hypothesis, F (n−1) ≥

2



(3/2)n−3 and F (n− 2) ≥ (3/2)n−4. Thus, we have F (n) ≥ (3/2)n−3 + (3/2)n−4 =
(3/2)n−2

(
2
3

+ 4
9

)
> (3/2)n−2, which completes the inductive step.

(b) Using the part (a) or otherwise, prove that for every n ≥ 2, the following re-
cursive algorithm for the weighted interval scheduling problem takes Ω((1.5)n)
time. (Recall that the input to the weighted interval scheduling problem are n
jobs where the ith job is the tuple (si, fi, vi). Further, note that we assume that
f1 ≤ f2 ≤ · · · ≤ fn and the values p(j) are known. Finally, recall that p(j) is the
the largest job index i ≤ j such that sj ≥ fp(j).)

Compute-Opt(j)
If j == 0 return 0.
return max{vj + Compute-Opt(p(j)),Compute-Opt(j − 1)}.

Solution. Consider the following generalization of the bad example for the algorithm
we saw in class (and also appears in the book). Consider the following n jobs where
the ith job is (i, i + 1, 1) (for 1 ≤ i ≤ n). Note that in this case, for every 2 ≤ i ≤ n,
p(i) = i− 2 and p(1) = 0. Thus, if T (n) was the run time for Compute-Opt(n), then
the following is true

T (n) ≥ T (n− 1) + T (n− 2).

It is also easy to see that T (0) ≥ 0 and T (1) ≥ 1. Thus, by part (a), we have
T (n) ≥ (1.5)n−2, which is Ω((1.5)n), as desired.

4. (5 + 15 = 20 points) A boolean polynomial P (X) of degree d is the formal polynomial
P (X) =

∑d
i=0 piX

i, where for every 0 ≤ i ≤ d, pi ∈ {0, 1} (also called the ith
coefficient) and X is a variable. Note that a polynomial is specified once the coefficients
p0, . . . , pd are specified. (E.g. X4 + X2 + X + 1 is a degree 4 polynomial).

Given two polynomials P (X) and Q(X) of degree at most n−1, their product R(X) =
P (X) ·Q(X) is defined as the formal polynomial(

n−1∑
i=0

piX
i

)(
n−1∑
i=0

qiX
i

)
=

2n−2∑
i=0

 i∑
j=max(0,i−n+1)

pjqi−j

X i.

For example, if P (X) = X2 + 1 and Q(X) = X2 + X + 1, then P (X) · Q(X) =
X4 + X3 + 2X2 + X + 1. (Note that the resulting polynomial can have coefficients
taking values outside of {0, 1}.)

(a) Let P (X) = X3 + X + 1 and Q(X) = X2 + X. What is P (X) ·Q(X)?

Solution. X5 + X4 + X3 + 2X2 + X

(b) In this part, you will design an algorithm to solve the polynomial multiplication
problem. In particular, the input to the problem for input size n ≥ 1 are the co-
efficients of the two polynomials p0, . . . , pn−1 and q0, . . . , qn−1. The output should
be the coefficient r0, . . . , r2n−2, where P (X) =

∑n−1
i=0 pi

iX
i, Q(X) =

∑n−1
i=0 qiX

i,
R(X) =

∑2n−2
i=0 riX

i such that R(X) = P (X) ·Q(X).

3



Design a divide and conquer algorithm that runs in time asymptotically faster
than O(n2). Justify the correctness of your algorithm (formal proof is not re-
quired). Also state the running time of your algorithm (and very briefly justify
it.)

Hint: Think of a similar problem we solved in class by a divide and conquer
algorithm.

Solution. The solution mirrors the divide and conquer algorithm we saw for integer
multiplication.

Define P 0(X) =
∑dn/2e−1

i=0 piX
i, P 1(X) =

∑n−dn/2e−1
i=0 pi+dn/2eX

i, Q0(X) =
∑dn/2e−1

i=0 qiX
i,

and Q1(X) =
∑n−dn/2e−1

i=0 qi+dn/2eX
i. It can be verified that

P (X) = P 0(X) + Xdn/2e · P 1(X) and Q(X) = Q0(X) + Xdn/2e ·Q1(X).

With the above understanding, like in the integer multiplication, we can deduce the
following:

P (X) ·Q(X) =(P 1(X) ·Q1(X)) ·X2dn/2e

+ ((P 1(X) + P 0(X))(Q1(X) + Q0(X))− P 1(X) ·Q1(X)− P 0(X) ·Q0(X)) ·Xdn/2e

+ P 0(X) ·Q0(X).

With the above recurrence relation, the rest is the same as integer multiplication, see
the book for the algorithm (replace “2” by “X” and the digits of the first number
by the coefficients of P (X) and the digits of the second number by the coefficients
of Q(X)) and the analysis to show that it runs in time O(nlog2 3). (As with integer
multiplication, note that adding or subtracting two polynomials of O(n) degree takes
O(n) time. Finally, multiplying a polynomial by X i just amounts to shifting the
coefficients of the polynomial by i positions to the “left” and thus, multiplying by
X2dn/2e and Xdn/2e above are both O(n) time operations.)

5. You are almost done!

(a) (20 points) You given as input n real numbers x1, . . . , xn. Design an efficient
algorithm that uses the minimum number m of unit intervals [`i, `i+1) (1 ≤ i ≤ m)
that cover all the input numbers. A number xj is covered by an interval [`i, `i +1)
if `i ≤ xj < `i + 1. Argue why your algorithm is correct (formal proof is not
required).

For example, consider the input for n = 4: 0.1, 0.9, 1.1, 1.555. Then the two
intervals [0.1, 1.1) and [1.1, 2.1) cover all the input numbers (i.e. in this case
m = 2).

Solution First, if necessary by sorting, we will assume that x1 ≤ x2 ≤ · · ·xn.
(This part is important.)

We will assign unit intervals greedily. Starting from i = 1, we will use the unit
interval [x1, x1 + 1) to cover as many points as possible. Let xi1 be the last point

4



covered by this interval. Then use a new unit interval [xi1+1, xi1+1) to cover as
many points as possible. Continue this process till all points are covered.

By the “greedy stays ahead” paradigm we can prove the optimality of the algo-
rithm above. In particular, for any 1 ≤ i ≤ m (where m is the number of intervals
used by the greedy algorithm above), if Oi is the index of the last point covered
by the ith interval in an optimal solution (we assume that the intervals in the
optimal solutions are sorted by their “start time”) and Gi is the corresponding
index for the greedy algorithm then Oi ≤ Gi. This is true by definition of the
greedy algorithm for i = 1. Now for the inductive hypothesis assume that for
every 1 ≤ i < j, Oi ≤ Gi. Now for the jth interval note that the j th interval for
the optimal solution can be used by the greedy algorithm jobs up to Oj. Thus,
by the greedy choice it can only do better.

(b) (Bonus) (10 points) I am too lazy to put in a bonus problem here but there will
be one in the actual final exam.

5


