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Self Intruduction

I In 2009, I got my BS in mathematics from Zhongshan
University in China, and start my PhD life in the same year.

I My advisor is Prof. Jinhui Xu.

I My research area: algorithms for machine learning and pattern
recognition.



Research in Our Group

Quite broad, and hard to summarize

I Currently 6 PhD students in our group, and more than 10
graduated. Each one works on one or more individual topics.

I Generally, algorithmic aspect for any real world problem.

1 Data analytics: clustering, regression, classification et al.
2 Computer vision: image matching, pattern recognition,

reconstruction et al.
3 Medical imaging: Computed Tomagraphy (CT)

reconstruction, segmentation et al.
4 Computational biology: normal/cancer cells discrimination,

pattern discovery for chromosome territories et al.
5 Fundamental topics in algorithms (from 531): matching,

max flow, shortest path, minimum cut et al.

I We care both theory and practice:

1 Time and space complexities, quality guarantee et al.
2 Performance on real data.
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Constrained Clustering in High Dimensional Space

I Ordinary clustering assumes that all data items are
independent from each other, and clustering is based only on
distance or cost, e.g., k-means, k-medians



Constrained Clustering in High Dimensional Space (cont.)

I Data items in real world applications are often correlated.
Thus, clustering needs to consider both distance and some
additional constraints, such as coloring, cluster size, etc.

I l-Diversity clustering.
I Chromatic clustering.
I r -Gather clustering.
I Capacitated clustering.
I Semi-supervised clustering.
I Uncertain data clustering.

I The additional constraints could complicate the problems
considerably. No problem above has been solved satisfactorily.

I Our result: A unified framework (based on new geometric
techniques) yielding good quality guarantees for all above
constrained clustering problems in any dimensional space
(accepted to SODA’15, one of the best conferences in
algorithms).
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Robust Algorithms for Classification and Regression

I Support Vector Machine (SVM) and Linear Regression:
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I Outliers could significantly deteriorate the solution:

I Soft margin method and/or additional penalty term in the
objective function do not work, if there is a considerable
number of outliers.

I Our results: new combinatorial approaches for explicit
outliers detection.

I Theoretical guarantee on quality of solution.
I Better performance in practice.
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Pattern Matching, Recognition, and Retrieval

I Point-sets matching under Earth Mover’s Distance (EMD),
which can be viewed as a min-cost max flow problem in the
Euclidean space.

I EMD has been extensively studied in computer vision:

I Registration [Cohen and Guibas, ICCV99]
I Pattern classification [Giannopoulos and Veltkamp, ECCV02]
I Image retrieval [Rubner et al. IJCV00]
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(a)
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Figure 7. Point Set Matching. See the text. We report the number of steps and the time in seconds
(s) for the FT iteration to converge. (a) , s. (b) , s. (c) , s.

(a) (b)

Figure 8. The Equal-Weight EMD under Translation in 1D with . The same flow is optimal
for (a) and , and (b) and . See the text for details.
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Pattern Matching, Recognition, and Retrieval (cont.)

Our results:

I The first FPTAS for minimizing EMD under certain
transformation in any fixed dimensional space.

I Prototype learning algorithms for association graphs, rigid
structures, and affine deformable structures

I Based on geometric techniques and EMD
I Avoiding encoding and decoding between geometry and graph

domains.
I More robust and efficient for pattern recognition and retrieval.
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Pattern Matching, Recognition, and Retrieval (cont.)

Our results (cont.):

I Applications of prototype learning algorithms: Extracting
inter-chromosomal association and chromosome topological
patterns from a population of cells:

I Determine the difference in normal and cancer cells
I Reveal the dynamics of the association pattern during cancer

progression.
I Published in CVPR’13 and Plos Computational Biology.

(PBDs). Many PCDs do not correspond to their border distances
(Supplementary Material, Figs. S3–S4). Thus, CT that may be
interacting at their borders will have PCDs that are not only
higher but also vary depending on the sizes of the CT and their
relative structural orientations to each other (Supplementary
Material, Figs. S3–S4). While only 33% of PCDs demonstrated
a significant difference from random simulations, !90% of the
PBDs are significantly different from random simulations at a
threshold where virtually none of the random simulation
values are significant (Supplementary Material, Table S2,
P ≤ 0.01). We conclude that the PBD is the preferred approach
to measuring interchromosomal distances. It avoids complica-
tions of CT size and orientation differences, directly measures
the nearest 3D distances between CT and gives distance values
that are predominantly nonrandom.

Pairwise CT interaction profiles of malignant CA1a cells
are altered compared with 10A breast epithelial cells

A CT pair can interact once or multiple times (up to four
instances, e.g. CT1a-CT2a, 1a-2b, 1b-2a and 1b-2b). We initially
determined the percentage of cells that contain at least one inter-
action based on the PBD measurements. PBDs ≤4 pixels or
≤0.28 mM were scored as ‘interacting chromosomes’. At this
threshold, !90% of the values were ‘zero pixels’ and virtually
all of those showed potential overlap between the two CT. The
degree of overlap based on the percent nuclear volume (0.10–
0.60%) was similar to a previous report (32) and averaged

!15% of the total volume of each interacting CT. The degree
of overlap between CT that we measured in our study,
however, is inconclusive based on the limited resolution of our
microscopic images and will require further study. The % asso-
ciations were then plotted for each of the 36 pairwise combina-
tions of heterologous CT (Fig. 4A).

Examination of the overall profiles revealed major differences
in 10A versus CA1a (x2, P , 0.001). Of the 36 different pairwise
interactions, 19 showed .10% differences between10 and CA1a
(Fig. 4A) and 33 were significantly greater than random simula-
tions in both 10 and CA1a (Fishers exact test, P , 0.001, Supple-
mentary Material, Figs S5 and S6). In contrast to experimental
values, the levels of interaction in random simulations were
size dependent (Supplementary Material, Fig. S7). Homologous
CT interactions (Supplementary Material, Fig. S8) were lower
than heterologous interactions and remained among the lowest
interacting CT when corrected for the one possible homologous
interaction compared with the four for heterologous interactions
(Supplementary Material, Fig. S8).

Multiple interactions among CT pairs are altered
in the malignant CA1a cells

We found that every CT homolog interacts with at least one of the
other eight CT in 90–100% of the cells (Supplementary Material,
Fig. S9). On average, each CT homolog interacts with!3.5outof
the 16 possible other heterologs (Fig. 5A). All CT have similar
levels of interaction independent of their size with the exception

Figure 1. Multi-FISH labeling of CT in MCF10. 2D projection images of: (A) 10 CT (1, 4, 11, 12, 15, 16, 17, 18, 21 and X) in MCF10A; (E) nine CT (1, 4, 11, 12, 15, 16,
18,21 and X) in MCF10CA1a; (B and F) larger chromosomes (1, 4, 11, 12 and X); (C and G) smaller chromosomes (15, 16, 17,18 and 21); and (D and H) DAPIstaining
to visualize the nuclei.
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My Feelings and Advices

I What I really like: solving a real world problem

I What’s the challenging: finding a really good research topic.
I My suggestions:

I Open mind.
I Intuition is much more important than mathematics.



Thank you!

Question?


