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The Basics






Chapter 1

The Fundamental Question

1.1 Overview

Communication is a fundamental need of our modern lives. In fact, communication is some-
thing that humans have been doing for a long time. For simplicity, let us restrict ourselves
to English. It is quite remarkable that different people speaking English can be understood
pretty well: even if e.g. the speaker has an accent. This is because English has some built-in
redundancy, which allows for “errors” to be tolerated. We will pick an example from one of
the author’s experiences conversing with his two-year-old son, Akash. When Akash started
to speak his own version of English, which we will dub “Akash English,” we got examples
such as the one illustrated below:

Figure 1.1: Decoding for Akash English, one gets “I need little little (trail)mix.”



With some practice Akash’s parents were able to “decode” what Akash really meant. In
fact, Akash could communicate even if he did not say an entire word properly and gobbled
up part(s) of word(s).

The above example shows that having redundancy in a language allows for communi-
cation even in the presence of (small amounts of) differences and errors. Of course, in our
modern digital world, all kinds of entities communicate (and most of the entities do not
communicate in English, or any natural language for that matter). Errors are also present
in the digital world, so these digital communications also use redundancy.

Error-correcting codes (henceforth, just codes) are clever ways of representing data so
that one can recover the original information even if parts of it are corrupted. The basic
idea is to judiciously introduce redundancy so that the original information can be recovered
even when parts of the (redundant) data have been corrupted.

For example, when packets are transmitted over the Internet, some of the packets get
corrupted or dropped. Packet drops are resolved by the TCP layer by a combination of
sequence numbers and ACKs. To deal with data corruption, the TCP/IP protocol uses a
form of error correction called CRC Checksum [33]. From a theoretical point of view, the
checksum is a terrible code since it does not have good error correction properties (for that
matter so is English). However, on the Internet, the current dominant mode of operation is
to detect errors and if errors have occurred, then ask for retransmission. This is the reason
why the use of checksum has been hugely successful in the Internet. However, there are other
communication applications where re-transmission is not an option. Codes are used when
transmitting data over the telephone line or via cell phones. They are also used in deep
space communication and in satellite broadcast (for example, TV signals are transmitted via
satellite). Indeed, asking the Mars Rover to re-send an image just because it got corrupted
during transmission is not an option—this is the reason that for such applications, the codes
used have always been very sophisticated.

Codes also have applications in areas not directly related to communication. In particu-
lar, in the applications above, we want to communicate over space. Codes can also be used
to communicate over time. For example, codes are used heavily in data storage. CDs and
DVDs work fine even in presence of scratches precisely because they use codes. Codes are
used in Redundant Array of Inexpensive Disks (RAID) [9] and error correcting memory [8].
Sometimes, in the Blue Screen of Death displayed by Microsoft Windows family of operating
systems, you might see a line saying something along the lines of “parity check failed”—this
happens when the code used in the error-correcting memory cannot recover from error(s).
Also, certain consumers of memory, e.g. banks, do not want to suffer from even one bit
flipping (this e.g. could mean someone’s bank balance either got halved or doubled-neither
of which are welcome'). Codes are also deployed in other applications such as paper bar
codes; for example, the bar code used by UPS called MaxiCode [7]. Unlike the Internet
example, in all of these applications, there is no scope for “re-transmission.”

In this book, we will mainly think of codes in the communication scenario. In this

IThis is a bit tongue-in-cheek: in real life banks have more mechanisms to prevent one-bit flip from
wreaking havoc.



framework, there is a sender who wants to send (say) k message symbols over a noisy channel.
The sender first encodes the k message symbols into n symbols (called a codeword) and then
sends it over the channel. The receiver gets a received word consisting of n symbols. The
receiver then tries to decode and recover the original £ message symbols. Thus, encoding is
the process of adding redundancy and decoding is the process of removing errors.

Unless mentioned otherwise, in this book we will make the following assumption:

The sender and the receiver only communicate via the channel.” In other words, other
than some setup information about the code, the sender and the receiver do not have
any other information exchange (other than of course what was transmitted over the
channel). In particular, no message is more likely to be transmitted over another.

%The scenario where the sender and receiver have a “side-channel” is an interesting topic that has
been studied but is outside the scope of this book.

The fundamental question that will occupy our attention for almost the entire book is
the tradeoff between the amount of redundancy used and the number of errors that can be
corrected by a code. In particular, we would like to understand:

Comment out 4 lines below for tagging check

Question 1.1.1 (Main Question). How much redundancy do we need to correct a given
amount of errors? (We would like to correct as many errors as possible with as little redun-
dancy as possible.)

Note that maximizing error correction and minimizing redundancy are contradictory
goals: a code with higher redundancy should be able to tolerate a greater number of errors.
By the end of this chapter, we will see a formalization of this question.

Once we determine the optimal tradeoff, we will be interested in achieving this optimal
tradeoff with codes that come equipped with efficient encoding and decoding. (A DVD
player that tells its consumer that it will recover from a scratch on a DVD by tomorrow
is not exactly going to be a best-seller.) In this book, we will primarily define efficient
algorithms to be ones that run in polynomial time.?

1.2 Some Definitions and Codes

To formalize Question 1.1.1, we begin with the definition of a code.

Definition 1.2.1 (Code). A code of block length n over an alphabet ¥ is a subset of ¥".
Typically, we will use q to denote the alphabet size |X|.%

2Readers unfamiliar with runtime analysis are referred to Appendix ??. Coming back to the claim on
efficiency— we are not claiming that this is the correct notion of efficiency in practice. However, we believe
that it is a good definition as the “first cut”’— quadratic or cubic time algorithms are definitely more desirable
than exponential time algorithms: see Section ?7? for more on this.

3Note that ¢ need not be a constant and can depend on n: we’ll see codes in this book where this is true.



Remark 1.2.2. We note that the ambient space X" can be viewed as a set of sequences,
vectors or functions. In other words, we can think of a vector (vi,...,v,) € X" as just the
sequence vy, ...,v, (in order) or a vector tuple (vy,...,v,) or as the function f : [n] — X
such that f(i) = v;. Sequences assume least structure on Y and hence are most generic.
Vectors work well when ¥ has some structure (and in particular is what is known as a
field, which we will see next chapter). Functional representation will be convenient when the
set of coordinates has structure (e.g., [n] may come from a finite field of size n). For now,
howewver, the exact representation does not matter and the reader can work with representation
as sequences.

We will also frequently use the following alternate way of looking at a code. Given a
code C' C X" with |C'| = M, we will think of C' as a mapping of the following form:

C:[M] — " (1.1)

In the above equation (1.1), we have used the notation [M] for any integer M > 1 to denote

the set {1,2,..., M}.
We will also need the notion of dimension of a code.

Definition 1.2.3 (Dimension of a code). Given a code C' C X", its dimension is given by

def

k = log, |C].

|

Let us begin by looking at two specific codes. Both codes are defined over ¥ = {0, 1}
(also known as binary codes). In both cases |C| = 2* and we will think of each of the 16
messages as a 4 bit vector.

We first look at the so-called parity code, which we will denote by Cg. Given a message
(71, 29, 3, 14) € {0,1}4, its corresponding codeword is given by

Co(z1, 22, T3, x4) = (21, X2, T3, Ty, T1 B T2 B T3P T4), (1.2)

where the @& denotes the XOR (also known as the EXOR or Exclusive-OR) operator. In other
words, the parity code appends the parity of the message bits (or takes the remainder of the
sum of the message bits when divided by 2) at the end of the message. For example, the
message (1,0,0, 1) will have a 0 appended at the end while (1,0,0,0) will have a 1 appended
at the end. Note that such a code uses the minimum amount of non-zero redundancy.

The second code we will look at is the so-called repetition code. This is a very natural
code (and perhaps the first code one might think of). The idea is to repeat every message bit
a fixed number of times. For example, we repeat each of the 4 message bits 3 times and we
use C3,., to denote this code. Given a message (1, T2, z3,24) € {0,1}*, its corresponding
codeword is given by

C3,rep(l’1; T2, X3, $4) = ($1, Zy, L1, T2, T2, T2, T3, T3, XT3, T4, T4, $4)~ (1-3)



Let us now try to look at the tradeoff between the amount of redundancy and the number
of errors each of these codes can correct. Even before we begin to answer the question, we
need to define how we are going to measure the amount of redundancy. One natural way
to define redundancy for a code with dimension k& and block length n is by their difference
n — k. By this definition, the parity code uses the least amount of redundancy. However,
one “pitfall” of such a definition is that it does not distinguish between a code with £ = 100
and n = 102 and another code with dimension and block length 2 and 4, respectively. The
first code uses 0.02 bits of redundancy per message bit while the second code uses 1 bit
of redundancy per message bit. Thus, in the relative sense, the latter code is using more
redundancy. This motivates the following notion of measuring redundancy.

Definition 1.2.4 (Rate of a code). The rate of a code with dimension k and block length n
is given by
Rk
n
Note that the higher the rate, the lesser the amount of redundancy in the code. Thus,
when constructing or analyzing codes, we will be interested in lower bounding the rate of a
code. (Occasionally we will also be sloppy and say that a code “has rate R” when we really
mean it “has rate at least R.”) Also note that as k <n,*

R <1

In other words, the rate of a code is the average amount of real information in each of the
n symbols transmitted over the channel. So, in some sense, rate captures the complement
of redundancy. However, for historical reasons, we will deal with the rate R (instead of the
more natural 1 — R) as our notion of redundancy. Given the above definition, Cg and Cj .,
have rates of % and % As expected, the parity code has a higher rate than the repetition
code.

We have formalized the notion of redundancy as the rate of a code as well as other
parameters of a code. However, to formalize Question 1.1.1, we still need to formally define
what it means to correct errors. We do so next.

1.3 Error Correction

Before we formally define error correction, we will first formally define the notion of encoding.

Definition 1.3.1 (Encoding function). Let C' C ¥". An equivalent description of the code
C' is an injective mapping E : [|C]] — X" called the encoding function.

Next we move to error correction. Informally, we can correct a received word if we
can recover the transmitted codeword (or equivalently the corresponding message). This
“reverse” process is called decoding.

4Further, in this book, we will always consider the case k > 0 and n < co and hence, we can also assume
that R > 0.



Definition 1.3.2 (Decoding function). Let C' C X" be a code. A mapping D : ¥" — [|C]]
is called a decoding function for C'.

The definition of a decoding function by itself does not give anything interesting. What we
really need from a decoding function is for the function to recover the transmitted message.
To understand this notion, we first need to understand the nature of errors that we aim to
tackle. In particular, if a transmitter transmits u € 3" and the receiver receives v € X", how
do we quantify the amount of “error” that has happened during this transmission? While
multiple notions are possible, the most central one, and the one we will focus on for most
of this book, is based on “Hamming distance,” a notion of distance that captures how close
are two given sequences u and v.

Definition 1.3.3 (Hamming distance). Given two vectors u,v € ¥£" the Hamming distance
between w and v, denoted by A(u,v), is the number of positions in which w and v differ.
We also define the relative Hamming distance, denoted §(u,v), to be the quantity 6(u,v) =
LA, v).

Note that the relative Hamming distance normalizes the distance so that §(u,v) always
lies in the interval [0, 1] (for every n, ¥ and strings u,v € ¥"). This normalization will be
useful when we study the asymptotic behavior of encoding and decoding functions, i.e., as
n — 0o. For now, though we will focus mostly on the (non-relative) Hamming distance.

The Hamming distance is a distance in a very formal mathematical sense: see Exercise 1.5.
Note that the definition of Hamming distance depends only on the number of differences and
not the nature of the difference. For example, consider the vectors u = 00000 and v = 10001.
One can see that their Hamming distance is A(u, v) = 2. Now consider the vector w = 01010.
Note that even though v # w, we again have a Hamming distance A(u, w) = 2.

To return to the quantification of errors, from now on we will say that if u is transmitted
and v is received then A(u, v) errors occurred during transmission. This allows us to quantify
the performance of an encoding/decoding function, or equivalently the underlying code as
we do next.

Definition 1.3.4 (t-Error Channel). An n-symbol t-Error Channel over the alphabet ¥ is a
function Ch : X" — X" that satisfies A(v,Ch(v)) <t for every v € X",

Definition 1.3.5 (Error Correcting Code). Let C' C X" be a code and let t > 1 be an integer.
C is said to be a t-error-correcting code if there exists a decoding function D such that for
every message m € [|C|] and every t-error channel Ch we have D (Ch(C(m))) = m.

Thus, a t-error-correcting code is one where there is a decoding function that corrects
any pattern of ¢ errors. For example, consider the case when the codeword (0,0,0,0) is
transmitted. Then a l-error-correcting code (over the alphabet {0,1}) should be able to
decode from any of the following received words:

(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1).

Figure 1.2 illustrates how the definitions we have examined so far interact.
We will also very briefly look at a weaker form of error recovery called error detection.



Channel Ch

Y

v =Ch(C(m)) — m

m — C(m)

Encoding function Decoding function

Figure 1.2: Coding process

Definition 1.3.6 (Error detection code). Let C' C 3™ be a code and let t > 1 be an integer.
C is said to be a t-error-detecting code if there exists a detecting procedure D such that for
every message m and every received vector v € X" satisfying A(C(m),v) < t, it holds that
D outputs a 1 if v=C(m) and 0 otherwise. In other words

D(v) = {1 z'fV:C’(m).

0  otherwise

Thus, a t-error-detecting code is one where if the transmission has at least one error and
at most ¢ errors, then the decoding function detects the error (by outputting 0). Note that
a t-error correcting code is also a t-error detecting code (but not necessarily the other way
round): see Exercise 1.1. Although error detection might seem like a weak error recovery
model, it is useful in settings where the receiver can ask the sender to re-send the message.
For example, error detection is used quite heavily in the Internet.

Finally, we also consider a more benign model of errors referred to as “erasures,” where
a symbol is merely (and explicitly) omitted from the transmission (as opposed to being
replaced by some other symbol). More specifically, if a symbols is erased, then it is replaced
by a special symbol “?” that is not a member of the alphabet ¥. For example, if (0,0,0,0)
was transmitted and the second symbols was erased by the channel, then the vector (0, 7,0, 0)
will be received.

Definition 1.3.7 (t-Erasure Channel). An n-symbol t-Erasure Channel over the alphabet
is a function Ch : X" — (X U {?})" that satisfies A(v,Ch(v)) <t for every v € X" (where
both arguments to A(-,-) are viewed as elements of (¥ U {?})") and for every i € [n] such
that v; # Ch(v); we have Ch(v); =7.

A coordinate ¢ such that Ch(v); =7 is called an erasure. We may now define erasure
correcting codes analogously to error-correcting codes.

Definition 1.3.8 (Erasure Correcting Code). Let C' C X" be a code and let t > 1 be
an integer. C is said to be a t-erasure-correcting code if there exists a decoding function
D such that for every message m € [|C|] and for every t-erasure channel Ch we have

D (Ch(C(m))) = m.

With the above definitions in place, we are now ready to look at the error correcting
capabilities of the codes we looked at in the previous section.

7



1.3.1 Error-Correcting Capabilities of Parity and Repetition Codes

In Section 1.2, we looked at examples of parity code and repetition code with the following
properties:

Cep:q=2,k=4n=>5R=4/5.
Csrepq=2k=4,n=12,R=1/3.

We will start with the repetition code. To study its error-correcting capabilities, we will
consider the following natural decoding function. Given a received word y € {0, 1}'? (where
recall the transmitted codeword is of the form (xq,x1, x1, e, T2, T2, T3, T3, T3, Ty, T4, x4) for
some (x1,Z9, x3,x4) € {0, 1}4), divide it up into four consecutive blocks (y1, ye, y3,ys) where
every block consists of three bits. Then, for every block y; (1 < i < 4), output the majority
bit as the message bit. We claim this decoding function can correct any error pattern with
at most 1 error (see Exercise 1.2.) For example, if a block of 010 is received, since there
are two 0’s we know the original message bit was 0. In other words, we have argued the
following error correcting capability of Cf .-

Proposition 1.3.9. (., is a 1-error correcting code.

However, it is not too hard to see that Cj,., cannot correct two errors. For example, if
both of the errors happen in the same block and a block in the received word is 010, then
the original block in the codeword could have been either 111 or 000. Therefore in this case,
no decoder can successfully recover the transmitted message.®

Thus, we have pin-pointed the error-correcting capabilities of the Cs,., code: it can
correct one error, but not two or more. However, note that the argument assumed that the
error positions can be located arbitrarily. In other words, we are assuming that the channel
noise behaves arbitrarily (subject to a bound on the total number of errors). However, we
can model the noise differently. We now briefly digress to look at this issue in slightly more
detail.

Digression: Channel Noise. As was mentioned above, until now we have been assuming
the following noise model, which was first studied by Hamming;:

Any error pattern can occur during transmission as long as the total number of
errors is bounded. Note that this means that the location as well as the nature®
of the errors is arbitrary.

We will frequently refer to Hamming’s model as the Adversarial Noise Model. 1t is important
to note that the atomic unit of error is a symbol from the alphabet. For example, if the error
pattern” is (1,0,1,0,0,0) and we consider the alphabet to be {0, 1}, then the pattern has two

SRecall we are assuming that the decoder has no side information about the transmitted message.

SFor binary codes, there is only one kind of error: a bit flip. However, for codes over a larger alphabet,
say {0,1,2}, 0 being converted to a 1 and 0 being converted into a 2 are both errors, but are different kinds
of errors.

TIf v is transmitted and Ch(v) is received then the ‘difference’ between Ch(v) and v is the error pattern.
For binary alphabet the difference is the XOR. operator.



errors (since the first and the third locations in the vector have a non-zero value, i.e. value of
1). However, if our alphabet is {0, 1} (i.e. we think of the vector above as ((1,0, 1), (0,0,0)),
with (0,0,0) corresponding to the zero element in {0,1}%), then the pattern has only one
error. Thus, by increasing the alphabet size we can also change the adversarial noise model.
As the book progresses, we will see how error correction over a larger alphabet is easier than
error correction over a smaller alphabet.

However, the above is not the only way to model noise. For example, we could also have
following error model:

No more than 1 error can happen in any contiguous three-bit block.

First note that, for the error model above, no more than four errors can occur when a
codeword in Cj ¢, is transmitted. (Recall that in Cj,.,, each of the four bits is repeated
three times.) Second, note that the decoding function that takes the majority vote of each
block can successfully recover the transmitted codeword for any error pattern, while in
the worst-case noise model it could only correct at most one error. This channel model is
admittedly contrived, but it illustrates the point that the error-correcting capabilities of a
code (and a decoding function) are crucially dependent on the noise model.

A popular alternate noise model is to model the channel as a stochastic process. As
a concrete example, let us briefly mention the binary symmetric channel with crossover
probability 0 < p < 1, denoted by BSC,,, which was first studied by Shannon. In this model,
when a (binary) codeword is transferred through the channel, every bit flips independently
with probability p.

Note that the two noise models proposed by Hamming and Shannon are in some sense
two extremes: Hamming’s model assumes no knowledge about the channel (except that
a bound on the total number of errors is known® while Shannon’s noise model assumes
complete knowledge about how noise is produced. In this book, we will consider only these
two extreme noise models. In real life, the situation often is somewhere in between.

For real life applications, modeling the noise model correctly is an extremely important
task, as we can tailor our codes to the noise model at hand. However, in this book we will not
study this aspect of designing codes at all, and will instead mostly consider the worst-case
noise model. Informally, if one can communicate over the worst-case noise model, then one
could use the same code to communicate over nearly every other noise model with the same
amount of noise.

We now return to Cy, and examine its error-correcting capabilities in the worst-case noise
model. We claim that Cg cannot correct even one error. Suppose y = 10000 is the received
word. Then we know that an error has occurred, but we do not know which bit was flipped.
This is because the two codewords u = 00000 and v = 10001 differ from the received word y
in exactly one bit. As we are assuming that the receiver has no side information about the
transmitted codeword, no decoder can know what the transmitted codeword was.

8A bound on the total number of errors is necessary; otherwise, error correction would be impossible:
see Exercise 1.3.



Thus, from an error-correction point of view, Cyg is a terrible code (as it cannot correct
even 1 error). However, we will now see that Cg can detect one error. Consider Algo-
rithm 1.3.1.

Algorithm 1.3.1 Error Detector for Parity Code
INPUT: Received word y = (y1, Y2, Y3, Y4, Us)
OurpuT: 1ify € Cgq and 0 otherwise
Ly Dy DYs D Ys D Ys
2: RETURN 1@ b © If there is no error, then b = 0 and hence we need to “flip” the bit for
the answer

Note that when no error has occurred during transmission, y; = x; for 1 < i < 4 and
Ys = 1 D o D x3P x4, in which case b = 0 and we output 1B 0 = 1 as required. If there is a
single error then either y; = x; & 1 (for exactly one 1 <i <4)orys =21 Dro B3 Bryd 1.
It can be check that in this case, b = 1. In fact, one can extend this argument to obtain the
following result (see Exercise 1.4).

Proposition 1.3.10. The parity code Cs can detect an odd number of errors.

Let us now revisit the example that showed that one cannot correct one error using Cyg.
Recall, we considered two codewords in Cg, u = 00000 and v = 10001 (which are codewords
corresponding to messages 0000 and 1000, respectively). Now consider the scenarios in
which u and v are each transmitted and a single error occurs resulting in the received word
r = 10000. Thus, given the received word r and the fact that at most one error can occur,
the decoder has no way of knowing whether the original transmitted codeword was u or
v. Looking back at the example, it is clear that the decoder is “confused” because the two
codewords u and v do not differ in many positions. This notion is formalized in the next
section.

1.4 Distance of a Code

We now turn to a new parameter associated with a code that we call the minimum distance
of a code. As we will see later, minimum distance is connected to the other parameters,
including the error-correction and error-detection capacity of the code. However, due to the
cleanliness of the definition, it will often be the first of the parameters we will explore when
studying a new error-correcting code.

Definition 1.4.1 (Minimum distance). Let C' C ¥". The minimum distance (or just
distance) of C, denoted A(C), is defined to be

AC) = Cl;nclzréCA(cl, Ca).
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We also define the relative minimum distance of C' to be §(C'), is defined to be

i(C) = c121612205(01, C2).

In other words, A(C') is the minimum distance between two distinct codewords in C'. We
note that the repetition code Cs,., has distance 3 (recall (1.3)). Indeed, any two distinct
messages will differ in at least one of the message bits. After encoding, the difference in one
message bit will translate into a difference of three bits in the corresponding codewords. For
example

Cs.¢(0,0,0,0) = (0,0,0,0,0,0,0,0,0,0,0,0) and Cs,,(1,0,0,0) = (1,1,1,0,0,0,0,0,0,0,0,0).

We now claim that the distance of Cy is 2. This is a consequence of the following observa-
tions. If two messages m; and my differ in at least two places then A(Cg(my), Cp(my)) > 2
(even if we just ignored the parity bits). If two messages differ in exactly one place then the
parity bits in the corresponding codewords are different, which implies a Hamming distance
of 2 between the codewords. For example,

C4(1,0,0,0) = (1,0,0,0,1) and Cs(1,0,0,1) = (1,0,0, 1,0).

Thus, Cg has a smaller distance than Cf ., and can correct less number of errors than Cs ;).
This suggests that a larger distance implies greater error-correcting capabilities. The next
result formalizes this intuition. As we will see, minimum distance exactly captures both the
ability to recover from errors as also the notion of erasures (Definition 1.3.8).

Proposition 1.4.2. Given a code C, the following are equivalent:
1. C has minimum distance d > 2,
2. If d is odd, C can correct (d —1)/2 errors.
3. C can detect d — 1 errors.

4. C' can correct d — 1 erasures.

Remark 1.4.3. Property (2) above for even d is slightly different. In this case, one can
correct up to g — 1 errors but cannot correct g errors. (See Exercise 1_6)

Before we prove Proposition 1.4.2, let us apply it to the codes Cg and Cj ., which have
distances of 2 and 3, respectively. Proposition 1.4.2 implies the following facts that we have
already proved:

o C3,.p can correct 1 error (Proposition 1.3.9).

o (g can detect 1 error but cannot correct 1 error (Proposition 1.3.10).

11



The proof of Proposition 1.4.2 will need the following decoding function. Mazimum
likelihood decoding (MLD) is a well-studied decoding method for error correcting codes. The
MLD function outputs the codeword ¢ € C, which is as close as possible to the received
word in Hamming distance (with ties broken arbitrarily).” More formally, the MLD function
denoted by Dypp : X" — C is defined as follows. For every y € X",

Dyip(y) = arg Icrélél Alc,y).

Algorithm 1.4.1 is a naive implementation of the MLD.

Algorithm 1.4.1 Naive Maximum Likelihood Decoder
INPUT: Received word y € X"
OuTpPUT: Dyrp(y)

1: Pick an arbitrary ¢ € C and assign z < ¢

2: FOR every ¢ € C such that ¢ # ¢’ DO
3: IF A(c’,y) < A(z,y) THEN
A
)

: z <+ ¢
: RETURN 2z

Proof of Proposition 1.4.2 We will complete the proof in two steps. First, we will
show that if property 1 is satisfied then so are properties 2, 3 and 4 (we prove this via
three implications (1) implies (2), (1) implies (3) and (1) implies (4)). Then we show that
if property 1 is not satisfied then none of the properties 2, 3 or 4 hold (again via the
corresponding three implications).

Item 1. implies 2. Assume C has distance d. We first prove 2 (for this case assume that
d =2t +1). We now need to show that there exists a decoding function such that for all
error patterns with at most ¢ errors it always outputs the transmitted message. We claim
that the MLD function has this property. Assume this is not so and let ¢; be the transmitted
codeword and let y be the received word. Note that

Ay, er) < t. (1.4)

As we have assumed that MLD does not work, Dy;rp(y) = ¢ # ¢;. Note that by the
definition of MLD,

Ay, c2) < Aly, ). (1.5)

9Technically, as per Definition 1.3.2, a decoder should output a message while MLD outputs a codeword.
However, since we only consider code of distance at least one in this book, there is a bijection between
codewords and message so this syntatic difference does not matter.
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Consider the following set of inequalities:

A(eq, ) < Afea,y) + Aey,y) (1.6)
< 2A(ey,Yy) (1.7)

<2t (1.8)

=d—1, (1.9)

1.5)

where (1.6) follows from the triangle inequality (see Exercise 1.5), (1.7) follows from (1.
and (1.8) follows from (1.4). (1.9) implies that the distance of C' is at most d — 1, which is
a contradiction.

Item 1. implies 3. We now show that property 3 holds. That is, we need to describe
an algorithm that can successfully detect whether errors have occurred during transmission
(as long as the total number of errors is bounded by d — 1). Consider the following error
detection algorithm: check if the received word y = ¢ for some ¢ € C' (this can be done via
an exhaustive check). If no errors occurred during transmission, y = ¢;, where ¢; was the
transmitted codeword and the algorithm above will accept (as it should). On the other hand
if 1 < A(y,c1) < d— 1, then by the fact that the distance of C' is d, y ¢ C and hence the
algorithm rejects, as required.

Item 1. implies 4. Finally, we prove that property 4 holds. Let y € (X U {?})" be the
received word. First we claim that there is a unique ¢ = (c1,...,¢,) € C that agrees with y
(i.e. y; = ¢; for every i such that y; # 7). Indeed, for the sake of contradiction, assume that
this is not true, i.e. there exists two distinct codewords ¢, ¢y € C such that both ¢; and ¢,
agree with y in the unerased positions. Note that this implies that ¢; and ¢, agree in the
positions i such that y; # 7. Thus, A(cy,¢2) < [{i|ly; = ?}| < d — 1, which contradicts the
assumption that C' has distance d.

Given the uniqueness of the codeword ¢ € C that agrees with y in the unerased position,
an algorithm to find c is as follows: go through all the codewords in C' and output the desired
codeword.

Item —1. implies —2. For the other direction of the proof, assume that property 1 does
not hold, that is, C has distance d — 1. We now show that property 2 cannot hold: i.e., for
every decoding function there exists a transmitted codeword ¢; and a received word y (where
A(y,c1) < (d —1)/2) such that the decoding function cannot output ¢;. Let ¢; # ¢o € C
be codewords such that A(cj,c2) = d — 1 (such a pair exists as C' has distance d — 1). Now
consider a vector y such that A(y,c;) = A(y,c2) = (d — 1)/2. Such a y exists as d is odd
and by the choice of ¢; and ¢,. Figure 1.3 gives an illustration of such a y (matching color
implies that the vectors agree on those positions).

Now, since y could have been generated if either of ¢; or ¢, were the transmitted code-
word, no decoding function can work in this case.'®

0Note that this argument is just a generalization of the argument that Cg cannot correct 1 error.
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n—d+1 I% P

Figure 1.3: Bad example for unique decoding.

Item —1. implies —3. For the remainder of the proof, assume that the transmitted word
is ¢; and there exists another codeword ¢, such that A(cy,¢;) = d — 1. To see why property
3 is not true, let y = ¢o. In this case, either the error detecting algorithm detects no error,
or it declares an error when c, is the transmitted codeword and no error takes place during
transmission.

Item —1. implies —4. We finally argue that property 4 does not hold. Let y be the

received word in which the positions that are erased are exactly those where ¢; and ¢y differ.

Thus, given y both ¢; and ¢y could have been the transmitted codeword, and no algorithm

for correcting (at most d — 1) erasures can work in this case. |
Proposition 1.4.2 implies that Question 1.1.1 can be reframed as

Question 1.4.4 (Main question: reframed). What is the largest rate R that a code with
distance d can have?

We have seen that the repetition code Cj,., has distance 3 and rate 1/3. A natural
follow-up question (which is a special case of Question 1.4.4) is to ask

Question 1.4.5 (Special case of Question 1.4.4). Can we have a code with distance 3 and
rate R > %?

1.5 Hamming Code

With the above question in mind, let us consider the so-called Hamming code, which we will
denote by Cy. Given a message (71, T, 3, 24) € {0, 1}%, its corresponding codeword is given

14



by

CH('Z17$27$37I4> = (I1,$27x3,$4,l'2 ¥ X3 S¥ Ty, T ¥ X3 S¥ Ty, Tq ¥ X2 S¥ ZE4).

It can be verified that this code has the following parameters:
Cy:q=2k=4n=T,R=4/7.

We will show shortly that C'y has a distance of 3. We would like to point out that we
could have picked the three parities differently. The reason we mention the three particular
parities above is due to historical reasons. We leave it as an exercise to define an alternate
set of parities such that the resulting code still has a distance of 3: see Exercise 1.9.

Before we move on to determining the distance of C'y, we will need another definition.

Definition 1.5.1 (Hamming Weight). Let ¢ > 2. Given any vector v € {0,1,2,...,q—1}",
its Hamming weight, denoted by wt(v) is the number of non-zero symbols in v.

For example, if v = 01203400, then wt(v) = 4.
We now look at the distance of Cg.

Proposition 1.5.2. Cy has a distance of 3.

Proof. We will prove the claimed distance by using two properties of Cy:
i = 1.1
(i wt(c) = 3, (1.10)
and
min wt(c) = min A(cy,c 1.11
ceCy,c#0 ( ) c1#ceCy ( ! 2) ( )

The proof of (1.10) follows from a case analysis on the Hamming weight of the message bits.
Let us use x = (x1, 22, 3, 24) to denote the message vector.

o Case 0: If wt(x) = 0, then Cy(x) = 0, which means we do not have to consider this
codeword.

o Case 1: If wt(x) = 1 then at least two parity check bits in (o ® x3 ® x4, 71 B x3 D
Ty, T3 D X9 D xy) are 1 (see Exercise 1.10). So in this case, wt(Cy(x)) > 3.

)
o Case 2: If wt(x) = 2 then at least one parity check bit in (o ® x3 ® x4, 21 O 23 D
Ty, T1 D o D xy) is 1 (see Exercise 1.11). So in this case, wt(Cy(x)) > 3.

o Case 3: If wt(x) > 3 then those message bits themselves imply that wt(Cy(x)) > 3.

Thus, we can conclude that min wt(c) > 3. Further, note that wt(Cy(1,0,0,0)) = 3,

ceCy,c#0

which implies that min wt(c) < 3. This along with the lower bound that we just obtained

ceCpy,c#0

proves (1.10).
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We now turn to the proof of (1.11). For the rest of the proof, let x = (21, 2, x3, 24) and
y = (Y1, Y2, Y3, y4) denote the two distinct messages. Using associativity and commutativity
of the @ operator, we obtain that

Cu(x) + Cu(y) = Cu(x +y),

where the “+7 operator is just the bit-wise & of the operand vectors''. Further, it can be
verified that for two vectors u,v € {0,1}", we have:

A(u,v) = wt(u+v)
(see Exercise 1.12). Thus, we have

min  A(Cy(x),C — min  wt(Cy(x +
ctrel0)t (Cu(x),Cu(y)) L (Cu(x+y))

—  mi tC
in (Cu(x)),

where the second equality follows from the observation that {x +y|x #y € {0,1}"} = {x €
{0,1}"|x # 0}. Recall that wt(Cy(x)) = 0 if and only if x = 0 and this completes the proof
of (1.11). Combining (1.10) and (1.11), we conclude that Cy has a distance of 3. N

The second part of the proof could also be shown in the following manner. It can be
verified that the Hamming code is the set {x - Gg|x € {0,1}*}, where Gy is the following
matrix (where we think x as a row vector).'?

Gy =

O OO =
o O = O
o= O O
_ o O O
T )
=N
—_ O =

For example, the first column in Gy gives the first codeword bit of x; and the fifth column
of Gy gives the codeword bit x5 ® w3 D 4.

In fact, any binary code (of dimension k£ and block length n) that is generatedi by a
k x n matrix is called a binary linear code. (Both Cg and Cj,., are binary linear codes: see
Exercise 1.13.) This implies the following simple fact.

Lemma 1.5.3. For any binary linear code C' and any two messages x andy, C(x)+C(y) =
Clx+y).

UEg. (0,1,1,0) + (1,1,1,0) = (1,0,0,0).

PIndeed (21,22, 73,74) - G = (21,22, 73, T4, T2 B 13 B 14,71 O 23 B 14,71 O T2 O 14), as desired.

13That is, C = {x- G|x € {0,1}*}, where addition is the @ operation and multiplication is the AND
operation.
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Proof. For any binary linear code, we have a generator matrix G. The following sequence
of equalities (which follow from the distributivity and associativity properties of the Boolean
EXOR and AND operators) proves the lemma:

Cx)+Cy)=x-G+y-G
=(x+y) G
=C(x+Yy).

]

We stress that in the lemma above, x and y need not be distinct. Note that due to the
fact that b b = 0 for every b € {0, 1}, x+x = 0, which along with the lemma above implies
that C(0) = 0.'* We can infer the following result from the above lemma and the arguments
used to prove (1.11) in the proof of Proposition 1.5.2.

Proposition 1.5.4. For any binary linear code, its minimum distance is equal to the mini-
mum Hamming weight of any non-zero codeword.

Thus, we have seen that Cy has distance d = 3 and rate R = % while (s ..., has distance
d = 3 and rate R = % Thus, the Hamming code is provably better than the repetition code
(in terms of the tradeoff between rate and distance) and thus, answers Question 1.4.5 in the
affirmative. The next natural question is

Question 1.5.5 (Codes better than Cy). Can we have a distance 3 code with a rate higher
than that of Cy ?

We will address this question in the next section.

1.6 Hamming Bound

Now we switch gears to present our first tradeoff between redundancy (in the form of the
dimension of a code) and its error-correction capability (in the form of its distance). In
particular, we will first prove a special case of the so-called Hamming bound for a distance
of 3.

We begin with another definition.

Definition 1.6.1 (Hamming Ball). For any vector x € [q]",

B(x,e) ={y € [¢]"|A(x,y) < e}.

In other words, a Hamming ball of radius e, centered at x, contains all vectors within
Hamming distance at most e of x.
Next, we prove an upper bound on the dimension of every code with distance 3.

14This of course should not be surprising as for any matrix G, we have 0 - G = 0.
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Theorem 1.6.2 (Hamming bound for d = 3). Every binary code with block length n, di-
mension k, distance d = 3 satisfies

kE <n—logy(n-+1).
Proof. Given any two codewords, ¢; # ¢y € C, the following is true (as C' has distance®®

3): a
B(e1,1) N B(cg, 1) = 0. (1.12)

See Figure 1.4 for an illustration.

{o,13"

Figure 1.4: Hamming balls of radius 1 are disjoint. The figure is technically not correct: the
balls above are actually balls in the Euclidean space, which is easier to visualize than the
Hamming space.

Note that for all x € {0,1}" (see Exercise 1.16),
|B(x,1)| =n+1. (1.13)

Now consider the union of all Hamming balls centered around some codeword; their union
is a subset of {0,1}". In other words,

<" (1.14)

B, 1)

ceC

15 Assume that y € B(cy,1) N B(cg, 1), that is A(y,c;) < 1 and A(y,ca) < 1. Thus, by the triangle
inequality A(cq,c2) <2 < 3, which is a contradiction.
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As (1.12) holds for every pair of distinct codewords,

B, )| =) |B(c 1)

=> (n+1) (1.15)
= 2k “(n+1), (1.16)

where (1.15) follows from (1.13) and (1.16) follows from the fact that C' has dimension k.
Combining (1.16) and (1.14), we get

2F(n+1) <27,

or equivalently

ok < 2"
“n+1

Taking log, of both sides we get the desired bound:
kE<n—log,(n+1).
O

Thus, Theorem 1.6.2 shows that for n = 7, C'y has the largest possible dimension for
any binary code of block length 7 and distance 3 (as for n = 7, n —log,(n + 1) = 4). In
particular, it also answers Question 1.5.5 for n = 7 in the negative. Next, will present the
general form of Hamming bound.

1.7 Generalized Hamming Bound

We start with a new notation.

Definition 1.7.1. A code C C X" with dimension k and distance d will be called an (n, k, d)s
code. We will also refer to it as an (n,k,d)s| code.

We now proceed to generalize Theorem 1.6.2 to any distance d (from d = 3).

Theorem 1.7.2 (Hamming Bound for any d). For every (n,k,d), code

k<n—log, LEJ (T;) (q—1)

=0
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Proof. The proof is a straightforward generalization of the proof of Theorem 1.6.2. For
notational convenience, let e = L%J Given any two codewords, ¢; # ¢y € C, the following
is true (as C has distance' d):

B(cy,e) N Bcg,e) = 0. (1.17)

We claim that for all x € [¢]",

B, )| = (M- (118

Indeed any vector in B(x,e) must differ from x in exactly 0 < i < e positions. In the
summation, (7;) is the number of ways of choosing the differing ¢ positions and in each such
position, a vector can differ from x in ¢ — 1 ways.

Now consider the union of all Hamming balls centered around a codeword. Obviously,
their union is a subset of [¢]". In other words,

Bl(c.e)

ceC

<q" (1.19)

As (1.17) holds for every pair of distinct codewords,

B(e.e)| =D |B(c,e)l

ceC ceC
_ g Z (a1 (1.20)

where (1.20) follows from (1.18) and the fact that C' has dimension k. Combining (1.20) and
(1.19) and taking log, of both sides we will get the desired bound:

k<n—log, (; C‘) (q— 1)") .

Note that the Hamming bound gives a partial answer to Question 1.4.4. In particular,
any code of distance d can have rate R at most

o, (S, (- 1)

n

]

Further, the Hamming bound also leads to the following definition:

16 Assume that y € B(ci,e) N B(cg,e), that is A(y,c1) < e and A(y,c2) < e. Thus, by the triangle
inequality, A(c1,c2) < 2e < d — 1, which is a contradiction.
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Definition 1.7.3. Codes that meet Hamming bound are called perfect codes.

In other words, a perfect code leads to the following perfect “packing”: if one constructs
Hamming balls of radius L%J around all the codewords, then we would cover the entire
ambient space, i.e. every possible vector will lie in one of these Hamming balls.

One example of perfect code is the (7,4, 3)s Hamming code that we have seen in this
chapter (so is the family of general Hamming codes that we will see in the next chapter). A

natural question to ask is if

Question 1.7.4 (Perfect Codes). Other than the Hamming codes, are there any other perfect
(binary) codes?

We will see the answer in Section 2.4.

1.8 Family of codes

Until now, we have mostly studied specific codes with fized block lengths and dimensions.
However, when we perform an asymptotic study of codes, it makes more sense to talk about
a family of codes and study their asymptotic rate and distance. We define these notions
next.

Definition 1.8.1 (Code families, Rate and Distance). Let {n;};>1 be an increasing sequence
of block lengths and suppose there ezists sequences {k;}i>1 , {d;}i>1 and {q;}i>1 such that for
all i > 1 there exists an (n, ki, d;),, code C;. Then the sequence C = {C;}i>1 is a family of
codes. The rate of C is defined as
ki
R(C) = lim {—}

n;

when the limit exists. The relative distance of C is defined as

. d;
5© = tim {1t}

when the limit exists. If for alli > 1, ¢; = q then C is referred to as a family of q-ary codes.'”
18

For instance, we will in Section 2.4 see that Hamming code of Section 1.5 can be extended
to an entire family of codes. Specifically, Cy = {C;}icz+, with C; being an (n;.k;, d;)-code
with n; =2 — 1, k; =2 —i — 1,d; = 3 and thus,

R(Cy) = lim1— —

ihee i1

1"Tn all codes we will study these limits will exist, but of course it is possible to construct families of codes
where the limits do not exist.

18While a central goal is to understand g-ary families of codes, families over growing alphabets turn out
to be useful both to illustrate ideas and to get interesting g-ary families.
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and

5(Car) = lim —>— — 0.

i—oo 2t — 1

A significant focus of this text from now on will be on families of codes. This is necessary
as we will be studying the asymptotic behavior of algorithms on codes, which does not make
sense for a fixed code. For example, when we say that a decoding algorithm for a code C
takes O(n?) time, we would be implicitly assuming that C is a family of codes and that the
algorithm has an O(n?) running time when the block length is large enough. From now on,
unless mentioned otherwise, whenever we talk about a code, we will be implicitly assuming
that we are talking about a family of codes.

Given that we can only formally talk about asymptotic run time of algorithms, we now
also state our formal notion of efficient algorithms:

We’ll call an algorithm related to a code of block length n to be efficient if it runs in
time polynomial in n.

For all the specific codes that we will study in this book, the corresponding family of
codes will be a “family” in a more natural sense. By this we mean that all the specific codes
in a family of codes will be the “same” code except with different parameters. A bit more
formally, we will consider families {C;};>1, where given only the ‘index’ i, one can compute
a sufficient description of C; efficiently.™

Finally, the definition of a family of codes allows us to present the final version of the big
motivating question for the book. The last formal version of the main question we considered
was Question 1.4.4, where we were interested in the tradeoff of rate R and distance d. The
comparison was somewhat unfair because R was a ratio while d was an integer. A more
appropriate comparison should be between rate R and the relative distance §. Further, we
would be interested in tackling the main motivating question for families of codes, which
results in the following final version:

Question 1.8.2 (Main Question- formal). Given q, what is the optimal tradeoff between
R(C) and §(C) that can be achieved by some family C of q-ary codes?

A natural special case of Question 1.8.2 is whether the rate and relative distance of a
family of codes can be simultaneously positive. We formulate this special case as a separate
question below.

Question 1.8.3 (Asymptotically Good Codes). Does there exist a constant q and a q-ary
family of codes C such that R(C) > 0 and §(C) > 0 hold simultaneously ¢

Codes that have the above property are called asymptotically good. For the curious
reader, we will present many asymptotically good codes in the rest of this book, though a
priori the existence of these is not immediate.

19We stress that this is not always going to be the case. In particular, we will consider “random” codes
where this efficient constructibility will not be true.

22



1.9 Exercises

Exercise 1.1. Show that every t-error correcting code is also t-error detecting but not
necessarily the other way around.

Exercise 1.2. Prove Proposition 1.5.9.

Exercise 1.3. Show that for every integer n, there is no code with block length n that can
handle arbitrary number of errors.

Exercise 1.4. Prove Proposition 1.53.10.

Exercise 1.5. A distance function on X" (i.e. d : 3" x X" — R) is called a metric if the
following conditions are satisfied for every x,y,z € X™:

1. d(x,y) > 0.

2. d(x,y) =0 if and only if x =y.

3. d(x,y) = d(y,x).

4. d(x,z) < d(x,y) +d(y,z). (This property is called the triangle inequality.)

Prove that the Hamming distance is a metric.

Exercise 1.6. Let C be a code with distance d for even d. Then argue that C' can correct
up to d/2 —1 many errors but cannot correct d/2 errors. Using this or otherwise, arque that
if a code C' is t-error correctable then it either has a distance of 2t + 1 or 2t 4 2.

Exercise 1.7. In this exercise, we will see that one can convert arbitrary codes into code
with slightly different parameters:

1. Prove that if there exists an (n,k,d)s code then there also exists an (n — 1,k,d — 1)x
code. Specifically, show how to convert an (n,k,d)s code C' into an (n —1,k,d — 1)
code.

P

2. For odd d, prove that if an (n, k,d)y code exists, then there also exists an (n+1,k,d-+1)y
code. Specifically, show how to convert an (n,k,d)s code C into an (n+ 1,k,d+ 1),
code.

Note: Your conversion should not assume anything else about the code other than the pa-
rameters of the code C. Also your conversion should work for every n,k,d > 1 and every
Y.
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Exercise 1.8. In this problem we will consider a noise model that has both errors and
erasures. In particular, let C' be an (n, k,d)s code. As usual a codeword ¢ € C' is transmitted
over the channel and the received word is a vectory € (3 U{?})", where as before a ? denotes
an erasure. We will use s to denote the number of erasures in'y and e to denote the number
of (non-erasure) errors that occurred during transmission. To decode such a vector means
to output a codeword ¢ € C' such that the number of positions where ¢ disagree with'y in the
n — s non-erased positions is at most e. For the rest of the problem assume that

2e + s < d. (1.21)

1. Argue that the output of the decoder for any C' under (1.21) is unique.

2. Let C be a binary code (but not necessarily linear). Assume that there exists a decoder
D that can correct from < d/2 many errors in T'(n) time. Then under (1.21) one can
perform decoding in time O(T(n)).

Exercise 1.9. Define codes other than Cy with k =4,n =7 and d = 3.
Hint: Refer to the proof of Proposition 1.5.2 to figure out the properties needed from the three parities.

Exercise 1.10. Argue that if wt(x) = 1 then at least two parity check bits in (xo & x3 &
Ty, T1 D Ty B xy,T1 D a3 D xy) are 1.

Exercise 1.11. Argue that if wt(x) = 2 then at least one parity check bit in (xo & x3 &
.1'4,1'1@372@1’4,1’1@1’3@1’4) is 1.

Exercise 1.12. Prove that for any u,v € {0,1}", A(u,v) = wt(u+v).
Exercise 1.13. Argue that Cg and Cs ., are binary linear codes.

Exercise 1.14. Let G be a generator matriz of an (n,k,d)s binary linear code. Then G has
at least kd ones in it.

Exercise 1.15. Arqgue that in any binary linear code, either all codewords begin with a 0 of
exactly half of the codewords begin with a 0.

Exercise 1.16. Prove (1.13).

Exercise 1.17. Show that there is no binary code with block length 4 that achieves the
Hamming bound.

Exercise 1.18. ) There are n people in a room, each of whom is given a black/white hat
chosen uniformly at random (and independent of the choices of all other people). Fach person
can see the hat color of all other people, but not their own. Fach person is asked if they wish
to guess their own hat color. They can either guess, or abstain. FEach person makes their
choice without knowledge of what the other people are doing. They either win collectively,
or lose collectively. They win if at least one person does not abstain and all the people who
don’t abstain guess their hat color correctly. They lose if all people abstain, or if some person
guesses their color incorrectly. Your goal below is to come up with a strategy that will allow
the n people to win with pretty high probability. We begin with a simple warm-up:
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1. Argue that the n people can win with probability at least %

Next we will see how one can really bump up the probability of success with some careful
modeling, and some knowledge of Hamming codes. (Below are assuming knowledge of the
general Hamming code (see Section 2.4). If you do not want to skip ahead, you can assume
that n =7 in the last part of this problem.)

2. Lets say that a directed graph G is a subgraph of the n-dimensional hypercube if its
vertex set is {0,1}" and if u — v is an edge in G, then u and v differ in at most
one coordinate. Let K(G) be the number of vertices of G with in-degree at least one,
and out-degree zero. Show that the probability of winning the hat problem equals the
maximum, over directed subgraphs G of the n-dimensional hypercube, of K(G)/2™.

3. Using the fact that the out-degree of any vertez is at most n, show that K(G)/2" is at
most 15 for any directed subgraph G of the n-dimensional hypercube.

4. Show that if n = 2" — 1, then there exists a directed subgraph G of the n-dimensional
hypercube with K(G)/2" = 5.
Hint: This is where the Hamming code comes in.

1.10 Bibliographic Notes

Coding theory owes its origin to two remarkable papers: one by Shannon [37] and the other by
Hamming [21] both of which were published within a couple of years of each other. Shannon’s
paper defined the BSC, channel (among others) and defined codes in terms of its encoding
function. Shannon’s paper also explicitly defined the decoding function. Hamming’s work
defined the notion of codes as in Definition 1.2.1 as well as the notion of Hamming distance.
Both the Hamming bound and the Hamming code are (not surprisingly) due to Hamming.
The specific definition of Hamming code that we used in this book was the one proposed
by Hamming and is also mentioned in Shannon’s paper (which pre-dates Hamming’s) with
attribution to Hamming. The notion of erasures was defined by Elias [14]. Most exercises of
this chapter are based on [21]. The hat problem in Exercise 1.18 is from Ebert, Merkle and
Vollmer [13].
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Chapter 2

A Look at Some Nicely Behaved
Codes: Linear Codes

One motivation for the topic of this chapter is the following question: How we can represent
a code? Or more specifically, how many bits does it take to describe a code C' : [q]* — [¢]"?
In general, a code C : [q]* — [¢]™ can be stored using ng® symbols from [q] (n symbols for
each of the ¢* codewords) or ng”* log ¢ bits. For constant rate codes, this is exponential space,
which is prohibitive even for modest values of k like k£ = 100. A natural question is whether
we can do better. To have any hope of doing so, a succinct representation the code must
have some extra structure. It turns out that one broad class of codes that do possess extra
structure than general codes, is what are called linear codes. We have already seen binary
linear codes in Section 1.5, that is: C' C {0,1}" is a linear code if for all ¢1, ¢, € C, ¢14¢5 € C,
where the “+” denotes bit-wise XOR. In this chapter, we will see more general linear codes.
We will see that they not only offer enough structure to get succinct representations, but
they also possess several other nice properties.

To define general linear codes, we first need to introduce general finite fields and vector
spaces over such fields and we do so first before returning to codes.

2.1 Groups and Finite Fields

To define linear subspaces, we will need to work with (finite) fields. At a high level, we need
finite fields since when we talk about codes, we deal with finite symbols/numbers and we
want to endow these symbols with the same math that makes arithmetic over real numbers
work. Finite fields accomplish this precise task. We begin with a quick overview of fields.
We start with the more elementary notion of a group.

Definition 2.1.1. A group G is given by a pair (S, o), where S is the set of elements and o
is a function S x S — S with the following properties:

o CLOSURE: For every a,b € S, we have aob € S.
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o ASSOCIATIVITY: o is associative: that is, for every a,b,c € S, ao(boc) = (aob)oc.

o IDENTITY: There exists distinct a special elements e € S such that for every a € S we
have aoe =eoa = a.

1 1

o INVERSE: For every a € S, there exists its unique inverse a™—~ such that aoa™ =

a_loa:e.

If G = (S, 0) satisfies all the properties except the existence of inverses then G is called a
monoid. We say G is commutative if for every a,b € S, aob="boa.

We often use the same letter to denote the group (or other algebraic structures) and the
set of elements.

We now turn to the definition of a field. Informally speaking, a field is a set of elements
on which one can do addition, subtraction, multiplication and division and still stay in the
set.

Definition 2.1.2. A field F is given by a triple (S, +,-), where S is the set of elements and
+, - are functions S x S — S with the following properties:

o Addition: (S,+) form a commutative group with identity element denoted 0 € S.
« Multiplication: (S\{0},-) form a commutative group with identity element 1 € S\{0}.*
o Distributivity: - distributes over +: that is, for every a,b,c € S, a-(b+c¢) =a-b+a-c.

Again we typically use the same letter to denote the field and its set of elements. We also
use —a to denote the additive inverse of a € F and a~! to denote the multiplicative inverse
of a e F\ {0}.

We note that in the above definition we have not explicitly argued that a-0=0=10-a
for any a € S. (Technically this means (S, ) is a commutative monoid.) This is because this
property is implied by Definition 2.1.2— see Exercise 2.1.

With the usual semantics for + and -, R (set of real number) is a field, but Z (set of
integers) is not a field as division of two integers results in a rational number that need not
be an integer (the set of rational numbers itself is a field though: see Exercise 2.2). In this
course, we will exclusively deal with finite fields. As the name suggests these are fields with
a finite set of elements. (We will overload notation and denote the size of a field |F| = |S].)
The following is a well known result.

Theorem 2.1.3 (Size of Finite Fields). Fvery finite field has size p* for some prime p and

integer s > 1. Conversely for every prime p and integer s > 1 there exists a field F of size

p.

'Note that we do not include 0 since it does not have a multiplicative inverse.
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One example of a finite field that we have seen is the field with S = {0, 1}, which we will
denote by Fy (we have seen this field in the context of binary linear codes). For 5, addition
is the XOR operation, while multiplication is the AND operation. The additive inverse of
an element in Fy is the number itself while the multiplicative inverse of 1 is 1 itself.

Let p be a prime number. Then the integers modulo p form a field, denoted by F, (and
also by Z,), where the addition and multiplication are carried out modulo p. For example,
consider 7, where the elements are {0, 1,2,3,4,5,6}. We have (4+3) mod 7=0 and 4 -4
mod 7 = 2. Further, the additive inverse of 4 is 3 as (3+4) mod 7 = 0 and the multiplicative
inverse of 4 is 2 as 4-2 mod 7= 1.

More formally, we prove the following result.

Lemma 2.1.4. Let p be a prime. Then F, = ({0,1,...,p — 1}, 4, ) is a field, where +,
and -, are addition and multiplication modulo p.

Proof. The properties of associativity, commutativity, distributivity and identities hold
for integers and hence, they hold for IF,. The closure property follows since both the “addi-
tion” and “multiplication” are done modulo p, which implies that for any a,b € {0,...,p—1},
a+,b,a-,b€{0,...,p—1}. Thus, to complete the proof, we need to prove the existence of
unique additive and multiplicative inverses.

Fix an arbitrary a € {0,...,p — 1}. Then we claim that its additive inverse is p — a
mod p. It can be verified that a +p —a = 0 mod p. Next we argue that this is the unique
additive inverse. To see this note that the sequence a,a + 1,a + 2,...,a+p — 1 are p

consecutive numbers and thus, exactly one of them is a multiple of p, which happens for
b=p—a mod p, as desired.

Now fix an a € {1,...,p—1}. Next we argue for the existence of a unique multiplicative
universe a~*. Consider the set of numbers T' = {a -, b|b € {1,...,p — 1}}. We claim that
all these numbers are unique. To see this, note that if this is not the case, then there exist
by # by € {0,1,...,p — 1} such that a-b; = a-by mod p, which in turn implies that
a-(by —by) =0 mod p. Since a and by — by are non-zero numbers, this implies that p divides
a-(by —bs). Further, since a and |b; — bs| are both at most p— 1, this implies that multiplying
a and (by — by) mod p results in p, which is a contradiction since p is prime. Thus, we have
argued that |T'| = p — 1 and since each number in 7" is in [p — 1], we have that 7' = [p — 1].
Thus, we can conclude that there exists a unique element b such that a-b =1 mod p and
thus, b is the required a=!. N

One might think that there could be different finite fields with the same number of
elements. However, this is not the case:

Theorem 2.1.5. For every prime power q there is a unique finite field with q elements (up
to isomorphism? ).

Thus, we are justified in just using F, to denote a finite field on ¢ elements.

2An isomorphism ¢ : S — S’ is a bijective map (such that F = (S, +,-) and F' = (S, @, 0) are fields)
where for every aj,as € S, we have ¢(a1 + az) = ¢(a1) ® ¢(az) and ¢(ay - az) = ¢(a1) o #(az). In other
words, an ismorphisms is a map between representations that ‘preserves’ the effect of operators on elements.
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2.2 Vector Spaces and Linear Subspaces

Definition 2.2.1 (Vector Space). A wector space V' over a field F is given by a triple
(T,+,-) such that (T,+) form a commutative group and -, referred to as the scalar product,
is a function FxT — T such that for every a,b € F andu,v € T we have (a+b)-u = a-u+b-u
anda-(u+v)=a-u+a-v.

The most common vector space we will focus on is F" with + representing coordinatewise
addition in F and a - u representing the coordinatewise scaling of u by a.
We are finally ready to define the notion of linear subspaces of F".

Definition 2.2.2 (Linear Subspace). A non-empty subset S C F" is a linear subspace if the
following properties hold:

1. For everyx,y € S, x+y € S, where the addition is vector addition over F (that is, do
addition componentwise over T ).

2. For everya € F andx € S, a-x € S, where the multiplication is done componentwise
over IF.

Here is a (trivial) example of a linear subspace of Fs:
S1=4(0,0,0),(1,1,1),(2,2,2),(3,3,3), (4,4,4) }. (2.1)
Note that for example (1,1,1)+(3,3,3) = (4,4,4) € S; and 2-(4,4,4) = (3,3,3) € S as
required by the definition. Here is another somewhat less trivial example of a linear subspace
over F3:
S ={(0,0,0),(1,0,1),(2,0,2),(0,1,1),(0,2,2),(1,1,2),(1,2,0),(2,1,0),(2,2,1)} . (2.2)

Note that (1,0,1) 4 (0,2,2) = (1,2,0) € Sy and 2-(2,0,2) = (1,0,1) € Sy as required.

Remark 2.2.3. Note that the second property implies that 0 is contained in every linear sub-
space. Further for any subspace over Fy, the second property is redundant: see Exercise 2.5.

Before we state some properties of linear subspaces, we state some relevant definitions.

Definition 2.2.4 (Span). Given a set B = {vy,...,v,}. The span of B is the set of vectors

¢
{Zai -vila; € Fy for every i € [ﬁ]} :

=1
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Definition 2.2.5 (Linear (in)dependence of vectors). We say that vy, Vs, ... vy are linearly
independent if for every 1 < i < k and for every (k—1)-tuple (a1,as,...,a;—1,0i41,...,0;) €
f—1
F,~,
V; 7£ aivi+...ta; v, + Air1Vit1 + ...+ agVvg.

In other words, v; is not in the span of the set {vy,...,Vi_1,Vit1,...,Vn} foreveryl <i <k.
We say that vi,vs, ...V, are linearly dependent if they are not linearly independent.

For example the vectors (1,0,1),(1,1,1) € Sy are linearly independent since

e ay- (1707 ]-) = <a1707a1) 7é (]-’ 17 1) for any ai € {07 1}

* ag- (17 17 1) = <a27a27 a2> 7£ (1707 1) for any as € {07 1}

Definition 2.2.6 (Rank of a matrix). The rank of matriz in F];Xk is the mazimum number
of linearly independent rows (or columns). A matriz in ]F];X" with rank min(k,n) is said to
have full rank.

One can define the row (column) rank of a matrix as the maximum number of linearly
independent rows (columns). However, it is a well-known theorem that the row rank of a
matrix is the same as its column rank. For example, the matrix below over F3 has full rank

(see Exercise 2.6):
1 01
(101 "

Any linear subspace satisfies the following properties (the full proof can be found in any
standard linear algebra textbook).

Theorem 2.2.7. If S CF," is a linear subspace then
1. |S| = ¢* for some k > 0. The parameter k is called the dimension of S.

2. There exists at least one set of linearly independent vectors vy, ...,vy € S called basis
elements such that every x € S can be expressed as X = ayVy + asVy + ... + apVvy
where a; € Fy for 1 < ¢ < k. In other words, there exists a full rank k X n matriz
G (also known as a generator matrix) with entries from F, such that every x € S,
x = (ay,aq,...,a;) - G where

«— V] —
Vo —>
G =

— Vi —>

3. There exists a full rank (n — k) x n matriz H (called a parity check matrix) such that
for everyx € S, Hx? = 0.
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4. G and H are orthogonal, that is, G - HT = 0.

Proof Sketch.

Property 1. We begin with the proof of the first property. For the sake of contradiction,
let us assume that ¢* < |S| < ¢**1, for some k > 0. Iteratively, we will construct a set of
linearly independent vectors B C S such that |B| > k + 1. Note that by the definition of a
linear subspace the span of B should be contained in S. However, this is a contradiction as
the size of the span of B is at least® ¢**' > |S].

To complete the proof, we show how to construct the set B in a greedy fashion. In the
first step pick v; to be any non-zero vector in S and set B < {v;} (we can find such a
vector as |S| > ¢* > 1). Now say after the step ¢ (for some t < k), | B| = t. Now the size of
the span of the current B is ¢' < ¢* < |S|. Thus there exists a vector v,,; € S\ B that is
linearly independent of vectors in B. Set B <— B U {v;1}. Thus, we can continue building
B until |B| =k + 1, as desired.

Property 2. We first note that we can pick B = {vy,...,v,} to be any set of k linearly
independent vectors— this just follows from the argument above for Property 1.1. This is
because the span of B is contained in S. However, since |S| = ¢* and the span of B has ¢*
vectors, the two have to be the same.

Property 3. Property 3 above follows from another fact that every linear subspace S has a
null space N C I such that for every x € Sand y € N, (x,y) = 0. Further, it is known that
N itself is a linear subspace of dimension n — k. (The claim that NN is also a linear subspace
follows from the following two facts: for every x,y,z € F, (i) (x,y +2) = (x,y) + (x,2) and
(ii) for any a € F,, (x,ay) = a- (x,y).) In other words, there exists a generator matrix H
for it. This matrix H is called the parity check matrix of S.

Property 4. See Exercise 2.9. O
As examples, the linear subspace S; in (2.1) has as one of its generator matrices

and as one of its parity check matrices

12 2
Hl:(z 2 1)'

Further, the linear subspace S, in (2.2) has G5 as one of its generator matrices and has the
following as one of its parity check matrices

Hy=(11 2).

Finally, we state another property of linear subspaces that is useful.

3See Exercise 2.8.
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Lemma 2.2.8. Given matriz G of dimension k X n that is a generator matriz of subspace
S1 and matriz H of dimension (n — k) X n that is a parity check matriz of subspace Sy such
that GHT =0, then S; = Ss.

Proof. We first prove that S; C S5. Given any ¢ € 57, there exists x € IF’; such that
¢ = x(G. Then,

H-"=H-(xG)" = HG'x" = (GH")" x" =0,

which implies that ¢ € S5, as desired.

To complete the proof note that as H has full rank, its null space (or Sy) has dimension
n—(n—k) = k (this follows from a well known fact from linear algebra called the rank-nullity
theorem). Now as G has full rank, the dimension of S; is also k. Thus, as S; C S,, it has to
be the case that S; = Sy.% O

2.3 Linear Codes and Basic Properties

We now return to the topic of codes and introduce the central concept for this chapter as
well as much of this text.

Definition 2.3.1 (Linear Codes). Let q be a prime power (i.e. ¢ = p® for some prime p and
integer s > 1). C' CF is a linear code if it is a linear subspace of F;. If C' has dimension
k and distance d then it will be referred to as an [n,k,d), or just an [n, k], code.

Theorem 2.2.7 now gives two alternate characterizations of an [n, k], linear code C" first,
C' is generated by a k x n generator matrix G. Second, C'is defined by a (n — k) X n parity
check matrix H. Since these are important concepts for us, we define these formally below
before giving examples and consequences.

Definition 2.3.2 (Generator and Parity Check Matrices). If C' is an [n, k|, linear code then
there exists a matriz G € FZX” of rank k satisfying

C={x-GxeF}.

G is referred to as a generator matriz of C'. In other words, the code C' is the set of all
possible linear combinations of rows of G.
If C is an [n, k], linear code then there exists a matric H € Fé"_k)m of rank n — k
satisfying
C={yeF|H y" =0}.

H is referred to as a parity check matriz of C.

41f not, S; C Sy which implies that that |So| > |Si| + 1. The latter is not possible if both S; and S
have the same dimension.
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Note that we require G and H to have full row rank (i.e., the rows of G are linearly
independent and the same holds for H). Sometimes we will consider matrices M € F;"""
that are not of full row rank. These can still be used to generate a code C' = {{x-G|x € F"}
though the code C' will not be an [n, m], code. We will still refer to C' as the code generated
by M in such a case, though the phrase “generator matrix” will be reserved for full rank
matrices.

Note that neither the generator matrix nor the parity check matrix are unique for a given
code. However, all generator matrices (and parity check matrices) have the same dimensions,
i.e. all are k x n (and (n — k) x n respectively) matrices. We give examples of these matrices
for the case of the [7,4, 3], Hamming code below.

o The [7,4, 3], Hamming code has the following generator matrix:

O OO
OO~ O
O~ O O
_ o O O
— = = O
= O =
—_ O = =

« The following matrix is a parity check matrix of the [7,4, 3]s Hamming code:

0
H=10
1

O = O
)
o O =

1 11
011
1 01

Indeed, it can be easily verified that G - HT = 0. Then Lemma 2.2.8 proves that H is
a parity check matrix of the [7,4, 3]s Hamming code.

We now look at some consequences of the above characterizations of an [n, k|, linear
code C'. We started this chapter with a quest for succinct representation of a code. Note
that both the generator matrix and the parity check matrix can be represented using O(n?)
symbols from F,. Note that this is much smaller than the exponential representation of a
general code. More precisely we have the following result on succinct representations of a
linear code (see also Exercise 2.11):

Proposition 2.3.3. Any [n, k|, linear code can be represented with min(nk, n(n—=k)) symbols
from F,,.

There is an encoding algorithm for C' that runs in O(n?) (in particular O(kn)) time- given
a message m € IF';, the corresponding codeword C'(m) = m - G, where G is the generator
matrix of C. (See Exercise 2.12.)

Proposition 2.3.4. For any [n, k|, linear code, given its generator matriz, encoding can be
done with O(nk) operations over F,.
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There is an error-detecting algorithm for C' that runs in O(n?). This is a big improve-
ment over the naive brute force exponential time algorithm (that goes through all possible
codewords ¢ € C' and checks if y = ¢). (See Exercise 2.13.)

Proposition 2.3.5. For any [n, k], linear code, given its parity check matriz, error detection
can be performed in O(n(n — k)) operations over F,.

Next, we look at some alternate characterizations of the distance of a linear code.

2.3.1 On the Distance of a Linear Code

Linear codes admit a nice characterization of minimum distance in terms of the Hamming
weight of non-zero codewords, which we have seen for the special case of binary linear codes
(Proposition 1.5.4). Recall that we use wt(x) to denote the Hamming weight of a vector
x € X", i.e., the number of non-zero coordinates in x.

Proposition 2.3.6. For every [n, k,d|, code C, we have

d = min wt(c).
ceC,
c£0

Proof. To show that d is the same as the minimum weight we show that d is no more
than the minimum weight and d is no less than the minimum weight.

First, we show that d is no more than the minimum weight. We can see this by considering
A(0,c') where ¢’ is the non-zero codeword in C' with minimum weight; its distance from 0 is
equal to its weight. Thus, we have d < wt(c’), as desired.

Now, to show that d is no less than the minimum weight, consider ¢; # ¢y € C such
that A(cy,co) = d. Note that ¢; — ca € C (this is because —c; = —1 ¢y € C, where —1
is the additive inverse of 1 in F, and ¢; — ¢3 = ¢; + (—c¢2), which is in C by the definition
of linear codes). Now note that wt(c; — ¢3) = A(eq,cz) = d, since the non-zero symbols in
c1 — ¢ occur exactly in the positions where the two codewords differ. Further, since ¢; # cs,
c; — ¢ # 0, which implies that the minimum Hamming weight of any non-zero codeword in
C' is at most d. O

Next, we look at another property implied by the parity check matrix of a linear code.

Proposition 2.3.7. For every [n, k,d], code C with parity check matriz H, d equals the size
of the smallest subset of columns of H that are linearly dependent.

Proof. By Proposition 2.3.6, we need to show that the minimum weight of a non-zero
codeword in C'is the minimum number of linearly dependent columns. Let ¢ be the minimum
number of linearly dependent columns in H. To prove the claim we will show that ¢t < d and
t>d.
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For the first direction, Let ¢ # 0 € C be a codeword with wt(c) = d. Now note that,
by the definition of the parity check matrix, H - ¢/ = 0. Working through the matrix
multiplication, this gives us that >,  ¢;H' = 0, where

T 1 T T
H=1| H' H* ... g ... H"
Lo \J l
and ¢ = (c1,...,¢,). Note that we can skip multiplication for those columns for which the

corresponding bit ¢; is zero, so for H - ¢ to be zero, those H' with ¢; # 0 are linearly
dependent. This means that d > t, as the columns corresponding to non-zero entries in c
are one instance of linearly dependent columns.

For the other direction, consider the minimum set of columns from H, H*, H®? ... H"
that are linearly dependent. This implies that there exists non-zero elements ¢; ,...,c;, € F,

such that ¢, H" + ... + ¢} H* = 0. (Note that all the ¢;, are non-zero as no set of less than
t columns are linearly dependent.) Now extend ¢ , ..., ¢, to the vector ¢’ such that ¢ = 0

for j & {i1,...,4}. Note that we have H - (¢/)7 = 0 and thus, we have ¢/ € C. This in turn
implies that d < wt(c’) =t (where recall ¢ is the minimum number of linearly independent
columns in H). O

2.4 Hamming Codes

We now change gears and look at the general family of linear codes, which were discovered
by Hamming. So far, we have seen the [7,4, 3], Hamming code (in Section 1.5). In fact, for
any r > 2 there is a [2" — 1,2" —r — 1, 3], Hamming code. Thus in Section 1.5, we have seen
this code for r = 3.

Definition 2.4.1 (Binary Hamming Codes). For any positive integer r, define the matriz
H, ¢ ng(gr_l) to be the r x (2" — 1) matriz whose ith column H' is the binary representation
of i, for 1 <i < 2" —1. (Note that such a representation is a vector in {0,1}".)

The [2" —1,2" — r — 1], Hamming code, denoted by Cy ., is the code with parity check
matriz H,.

In other words, the general [2" — 1,2" — r — 1], Hamming code is the code
{ce{0,1}* HH, - " =0}
);

For example, for the case we have seen (r = 3
0001111
H;=(0 110011},
1010101
and the resulting code was a [7,4, 3], code.
Next we argue that the above Hamming code has distance 3 (in Proposition 1.5.2, we
argued this for r = 3).
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Proposition 2.4.2. The Hamming code [2" — 1,2" — r — 1, 3]y has distance 3.

Proof. No two columns in H, are linearly dependent. If they were, we would have H:, +
H’ = 0, but this is impossible since they differ in at least one bit (being binary representations
of integers, ¢ # j). Thus, by Proposition 2.3.7, the distance is at least 3. It is at most 3,
since (e.g.) H) + H? + H? = 0. O

Now note that under the Hamming bound for d = 3 (Theorem 1.6.2), k < n—log,(n+1),
so forn = 2" —1, k < 2" —r — 1. Hence, the Hamming code is a perfect code. (See
Definition 1.7.3.)

In Question 1.7.4, we asked which codes are perfect codes. Interestingly, the only perfect
binary codes are the following:

e The Hamming codes which we just studied.

o The trivial [n,1,n]y codes for odd n (which have 0" and 1™ as the only codewords):
see Exercise 2.24.

« Two codes due to Golay [17].

2.5 Efficient Decoding of Hamming codes

We have shown that the Hamming code has a distance of 3 and thus, by Proposition 1.4.2, can
correct one error. However, this is a combinatorial result and does not give us an efficient
algorithm. One obvious candidate for decoding is the MLD function (Algorithm 1.4.1).
Unfortunately, the only implementation of MLD that we know is the one in Algorithm 1.4.1,
which will take time 22", where n is the block length of the Hamming code.

However, we can do much better. Consider the following simple algorithm: given the
received word y, first check if it is indeed a valid codeword. If it is, we are done. Otherwise,
flip each of the n bits and check if the resulting vector is a valid codeword. If so, we have
successfully decoded from one error. If none of the checks are successful, then we declare
a decoding failure. Algorithm 2.5.1 formally presents this algorithm (where Cp, is the
2" —1,2" —r — 1, 3], Hamming code).”

It can be verified that Algorithm 2.5.1 can correct up to 1 error. If each of the checks
y' € Cp, can be done in T'(n) time, then the time complexity of the proposed algorithm
will be O(nT'(n)). Note that since Cp, is a linear code (and dimension k& = n — O(logn))
by Proposition 2.3.5, we have T'(n) = O(nlogn). Thus, the proposed algorithm has running
time O(n?logn).

Note that Algorithm 2.5.1 can be generalized to work for any linear code C' with distance
2t + 1 (and hence, can correct up to t errors): go through all possible error vectors z € [¢]"

Formally speaking, a decoding algorithm should return the transmitted message x but Algorithm 2.5.1
actually returns C . (x). However, since Cy, is a linear code, it is not too hard to see that one can obtain
x from Cp,(x) in O(n?) time: see Exercise 2.25. Further, for C, one can do this in O(n) time: see
Exercise 2.26.
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Algorithm 2.5.1 Naive Decoder for Hamming Code
INPUT: Received word y
OutpUT: cif A(y,c) <1 else Fail

1: IF y € Cy, THEN

2 RETURN y

3: FOR?=1...n DO

4 y «<—y+e > e; is the ith standard basis vector
5: IF y' € Cy, THEN
6
7

RETURN Yy’
RETURN Fail

(with wt(z) < t) and check if y —z is in the code or not. Algorithm 2.5.2 presents the formal
algorithm (where C' is an [n, k, 2t 4 1], code).

Algorithm 2.5.2 Decoder for Any Linear Code
INPUT: Received word y
OutpuT: ¢ € C if A(y,c) <t else Fail

1: FORt=0...t DO

2 FOR S C [n] such that |S| =i DO

3 FOR z € F} such that wt(zs) = wt(z) = i DO
4: IFy —z € C' THEN
)
6:

RETURN y — z
RETURN Fail

The number of error patterns z considered by Algorithm 2.5.2 is® >0 (")(g — 1) <
O((nq)*). Furthermore by Proposition 2.3.5, Step 4 can be performed with O(n?) operations
over F,. Thus, Algorithm 2.5.2 runs with O(n'™2¢") operations over F,, which for ¢ being a
small polynomial in n, is nO® operations. In other words, the algorithm will have polynomial
running time for codes with a constant distance (though the running time would not be
practical even for moderate values of t).

However, it turns out that for Hamming codes there exists a decoding algorithm with an
O(n?) running time. To see this, first note that if the received word y has no errors, then
H, -y’ = 0. If not, then y = ¢ + e;, where ¢ € C and e; is the unit vector with the only
nonzero element at the i-th position. Thus, if H’ stands for the i-th column of H,.,

H -y =H,.-¢c" +H,-(e)" =H, - (e;)" = H.,

where the second equality follows as H, - ¢Z = 0, which in turn follows from the fact that
¢ € C. In other words, H, - y' gives the location of the error. This leads to Algorithm 2.5.3.

Note that H, is an 7 x n matrix where n = 2" — 1 and thus, r = O(logn). This implies
Step 1 in Algorithm 2.5.3, which is a matrix vector multiplication can be done in time

6Recall (1.18).
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Algorithm 2.5.3 Efficient Decoder for Hamming Code
INPUT: Received word y
OutpUT: cif A(y,c) <1 else Fail

1: b H,- yT.

2: Let i € [n] be the number whose binary representation is b
3: IFy —e; € Cy THEN
4
5

RETURN y — e;
: RETURN Fail

O(nlogn). By a similar argument and by Proposition 2.3.5 Step 3 can be performed in
O(nlogn) time, and therefore Algorithm 2.5.3 overall runs in O(nlogn) time. Thus,

Theorem 2.5.1. The [n = 2" — 1,2" — r — 1,3]y Hamming code is 1-error correctable.
Furthermore, decoding can be performed in time O(nlogn).

2.6 Dual of a Linear Code

Until now, we have thought of parity check matrix as defining a code via its null space.
However, we are not beholden to think of the parity check matrix in this way. A natural
alternative is to use the parity check matrix as a generator matrix. The following definition
addresses this question.

Definition 2.6.1 (Dual of a code). Let H be a parity check matriz of a code C, then the
code generated by H is called the dual of C. The dual of a code C is denoted by C+.

It is obvious from the definition that if C' is an [n, k], code, then C* is an [n,n — k],
code. Applying duality to the Hamming codes and a close relative, we get two families of
codes described below.

Definition 2.6.2 (Simplex and Hadamard Codes). For positive integer r the Simplex Code
Csim,r 1s the code generated by H,. (Equivalently Csip,, = Cﬁr.) For positive integer r the
Hadamard Code Clpag, is the [27,7]y code generated by the r x 2" matriz H] obtained by
adding the all zero column to (say in front of columns in) H,.

We claim that Cg;y,, and Cpaq, are [27 — 1,7,2"7 ]y and [27,r, 2775 codes respectively.
The claimed block length and dimension follow from the definition of the codes, while the
distance follows from the following result.

Proposition 2.6.3. Cg;,, and Crgqa, both have distances of or—1,

Proof. We first show the result for Cpaq,. In fact, we will show something stronger:
every non-zero codeword in Cp,q, has weight exactly equal to or—1 (the claimed distance
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follows from Proposition 2.3.6). Consider a message x # 0. Let its ith entry be x; = 1. x is
encoded as

c=(z1,29,... ,xr)(Hf, H}, . ,Hfr_l),

where Hﬂ is the binary representation of 0 < j < 2" — 1 (that is, the set set of vector Hﬁ is
exactly the set of all the vectors in {0, 1}"). Further note that the jth bit of the codeword ¢ is
(x, H7). Group all the columns of the generator matrix into pairs (u,v) such that v=u-+e;
(i.e. v and u are the same except in the ith position). For example for r = 3 and i = 2, the
paired up columns are marked with the same color below:

1

1
0 1
(

o O O

0
0
1

o = O

0 1 1
1 0 1
1 1 1

0
Notice that this partitions all the columns into 2"~! disjoint pairs. Then,
(x,v) = (x,u+e¢) = (x,u) + (x,¢;) = (x,u) +z; = (x,u) + 1.

Thus we have that (x,v) is the negation of (x,u), i.e. exactly one of (x,v) and (x,u) is 1. As
the choice of the pair (u,v) was arbitrary, we have proved that for any non-zero codeword c
such that ¢ € Caa,, wi(c) = 2771

For the simplex code, we observe that all codewords of C,q, are obtained by padding a
0 to the beginning of the codewords in Cg;y, -, which implies that all non-zero codewords in
Clsimr also have a weight of 2"~!, which completes the proof. O

We remark that the family of Hamming code has a rate of 1 and a (relative) distance of 0
while the families of Simplex/Hadamard codes have a rate of 0 and a relative distance of 1/2.
Thus neither gives a positive answer to Question 1.8.3 and so the quest for an asymptotically
good code remains ongoing for now (and we will get to these in future chapters).

2.7 Exercises

Exercise 2.1. Let (S,+,) be a field (as per Definition 2.1.2). Then argue that a-0 = 0-a =0
for every a € S.

Exercise 2.2. Prove that the set of rationals (i.e. the set of reals of the form §, where both
a and b # 0 are integers), denoted by Q, is a field.

Exercise 2.3. Let g be a prime power. Let x € F, such that x ¢ {0,1}. Then prove that for
anyn < q—1:
u |

2= T

=0
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Exercise 2.4. The main aim of this exercise is to prove the following identity that is true
for any a € Fy:
ol =« (24)

To make progress towards the above we will prove a sequence of properties of groups. A
group G is a pair (S, o) where the operator o : G x G — G such that o is commutative’ and
the elements of S are closed under o. Further, there is a special element « € S that is the
identity element and every element a € S has an inverse element b € S such that aob = .
Note that a finite field F, consists of an additive group with the + operator (and 0 as additive
identity) and a multiplicative group on the non-zero elements of F, (which is also denoted
by F, ) with the - operator (and 1 as the multiplicative identity).®

For the rest of the problem let G = (S,-) be a multiplicative group with |G| = m. Prove
the following statements.

1. For any B € G, let o(B) be the smallest integer o such that B° = 1. Prove that such
an o < m always exists. Further, argue that T = {1,3,...,8°7'} also forms a group.

(T,-) is called a sub-group of G and o(B) is called the order of (3.

2. For any g € G, define the coset (w.r.t. T) as

gT ={g-B|B €T}

Prove that if h™'-g € T then gT = hT and gT NhT = () otherwise. Further argue that
these cosets partition the group G into disjoint sets.

3. Argue that for any g € G, we have |gT| = |T.

4. Using the above results or otherwise, argue that for any B € G, we have

gm =1

5. Prove (2.4).

Exercise 2.5. Prove that for ¢ = 2, the second condition in Definition 2.2.2 is implied by
the first condition.

Exercise 2.6. Prove that Gy from (2.3) has full rank.
Exercise 2.7. In this problem we will look at the problem of solving a system of linear
equations over F,. That is, one needs to solve for unknowns xi,...,x, given the following

m linear equations (where a; j,b; € F, for1 <i<m and1 < j<n):

1171 + a12%2 + - -+ ATy = by

"Technically, G is an abelian group.
8Recall Definition 2.1.2.
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2,101 + G22%2 + - -+ + A2y Ty = ba.

Am,121 + Am 222 +-+ AmnTn = bm

1. (Warm-up) Convince yourself that the above problem can be stated as A -xT = b’
where A is an m x n matriz over F,, x € F and b € F".

2. (Upper Triangular Matriz) Assume n = m and that A is upper triangular, i.e. all
diagonal elements (a;;) are non-zero and all lower triangular elements (a;;, 1 > j) are
0. Then present an O(n?) time’ algorithm to compute the unknown vector x.

3. (Gaussian Elimination) Assume that A has full rank (or equivalently a rank of n.)

(a) Prove that the following algorithm due to Gauss converts A into an upper trian-
gular matriz. By permuting the columns if necessary make sure that a;1 # 0.
(Why can one assume w.l.o.g. that this can be done?) Multiply all rows 1 <i <n
with 22 and then subtract ay; from the (i, j)th entry 1 < j < n. Recurse with

a1

the same algorithm on the (n — 1) x (n — 1) matriz A’ obtained by removing the
first row and column from A. (Stop when n =1.)

(b) What happens if A does not have full rank? Show how one can modify the
algorithm above to either upper triangulate a matrixz or report that it does not
have full rank. (Convince yourself that your modification works.)

(c) Call a system of equations A -x" = b’ consistent if there exists a solution to
x € Fy. Show that there exists an O(n®) algorithm that finds the solution if the
system of equations is consistent and A has full rank (and report “fail” otherwise).

4. (m < n case) Assume that A has full rank, i.e. has a rank of m. In this scenario
either the system of equations is inconsistent or there are ¢"~™ solutions to x. Modify
the algorithm from above to design an O(m?*n) time algorithm to output the solutions
(or report that the system is inconsistent).

o Note that in case the system is consistent there will be q"~™ solutions, which
might be much bigger than O(m?n). Show that this is not a problem as one can
represent the solutions as system of linear equations. (I.e. one can have n —m
“free” variables and m “bound” variables.)

5. (m > n case) Assume that A has full rank, i.e. a rank of n. In this scenario either
the system of equations is inconsistent or there is a unique solution to x. Modify the
algorithm from above to design an O(m?n) time algorithm to output the solution (or
report that the system is inconsistent).

9For this problem, any basic operation over F, takes unit time.
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6. (Non-full rank case) Give an O(m?n) algorithm for the general case, i.e. the m x n
matriz A need not have full rank. (The algorithm should either report that the system
of equations is inconsistent or output the solution(s) to x.)

Exercise 2.8. Prove that the span of k linearly independent vectors over F, has size exactly

q¢".

Exercise 2.9. Let G and H be a generator and parity check matrix of the same linear code
of dimension k and block length n. Then G - HT = 0.

Exercise 2.10. Let C' be an [n, k], linear code with a generator matriz with no all zeros
columns. Then for every position i € [n] and o € F,, the number of codewords ¢ € C' such
that ¢; = « is exactly ¢"*.

Exercise 2.11. Prove Proposition 2.5.5.

Exercise 2.12. Prove Proposition 2.5.4.

Exercise 2.13. Prove Proposition 2.5.5.

Exercise 2.14. A set of vector S C Fy is called t-wise independent if for every set of
positions I with |I| = t, the set S projected to I has each of the vectors in ]FZ appear the
same number of times. (In other words, for every choice of I C [n] with |I| = t, if one
picks a vector (X1, ...,X,) uniformly at random from S then the variables {X;|i € I} are
distributed uniformly and independently random over F,).

Prove that any linear code C whose dual C* has distance d* is (d* —1)-wise independent.

Exercise 2.15. A set of vectors S C F% is called e-biased sample space if the following
property holds. Pick a vector X = (x1,...,xx) uniformly at random from S. Then X has
bias at most €, that is, for every I C [k],

We will look at some connections of such sets to codes.

<e.

1. Let C be an [n, k| code such that all non-zero codewords have Hamming weight in the
range [(12;5) n, (1%) n] Then there exists an e-biased space of size n in Fg

2. Let C be an [n,k]s code such that all non-zero codewords have Hamming weight in

1

the range [(5 — 'y) n, (% + 7) n] for some constant 0 < v < 1/2. Then there exists an

e-biased space in Fg of size nOO~"log(1/e))

43



Exercise 2.16. Let C be an [n,k,d], code. Let y = (y1,...,yn) € (F,U{?})" be a received
word™ such that y; =7 for at most d — 1 values of i. Present an O(n®) time algorithm that
outputs a codeword ¢ = (cy,...,c,) € C that agrees with y in all un-erased positions (i.e.,
¢; = vy if yi #7) or states that no such ¢ exists. (Recall that if such a ¢ ezists then it is
unique.)

Exercise 2.17. In the chapter, we did not talk about how to obtain the parity check matriz
of a linear code from its generator matrixz. In this problem, we will look at this “conversion”
procedure.

(a) Prove that any generator matriz G of an [n, k|, code C' (recall that G is a k x n matriz)
can be converted into another equivalent generator matriz of the form G’ = [I|A], where
I, is the k x k identity matriz and A is some k X (n — k) matriz. By “equivalent,” we
mean that the code generated by G’ has a linear bijective map to C.

Note that the code generated by G' has the message symbols as its first k symbols in the
corresponding codeword. Such codes are called systematic codes. In other words, every
linear code can be converted into a systematic code. Systematic codes are popular in
practice as they allow for immediate access to the message symbols.

(b) Given an k x n generator matriz of the form [Ix|A], give a corresponding (n — k) x n
parity check matrix. Briefly justify why your construction of the parity check matriz is
correct.

Hint: Try to think of a parity check matriz that can be decomposed into two submatrices: one
will be closely related to A and the other will be an identity matriz, though the latter might not be a

k X k matrix).
(¢) Use part (b) to present a generator matriz for the 2" —1,2" —r — 1, 3]y Hamming code.

Exercise 2.18. So far in this book we have seen that one can modify one code to get another
code with interesting properties (for example, the construction of the Hadamard code from
the Simplex code from Section 2.6 and Ezercise 1.7). In this problem you will need to come
up with more ways of constructing new codes from existing ones.

Prove the following statements (recall that the notation (n, k,d), code is used for general
codes with ¢ codewords where k need not be an integer, whereas the notation [n, k,d], code
stands for a linear code of dimension k):

1. If there exists an (n,k,d)sm code, then there also exists an (nm,km,d > d)s code.
2. If there exists an [n, k,d|om code, then there also exists an [nm,km,d > d]s code.

3. If there exists an [n, k,d], code, then there also exists an [n—d,k—1,d" > [d/q]], code.

10A ? denotes an erasure.
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4. If there exists an [n, k,én|, code, then for every m > 1, there also exists an

(n™ k/m,(1—(1—=20)")-n™) .. code.

q

5. If there exists an [n, k,dnly code, then for every odd m > 1, there also exists an

(™ kg - (1= (1—=20)") -n™], code.

Note: In all the parts, the only things that you can assume about the original code are only
the parameters given by its definition— nothing else!

Exercise 2.19. Let Cy be an [n, ki, d1], code and Cy be an [n, ks, ds], code. Then define a
new code as follows:

Cl ) 02 = {(cl,cl —|—C2)|Cl < Cl,CQ < 02}

Next we will prove interesting properties of this operations on codes:

1. If G; is the generator matriz for C; for i € [2], what is a generator matrixz for C; & Cy?

2. Argue that Cy, © Cy is an [2n, ki + ko, d def min(2d,, ds)], code.

3. Assume there exists algorithms A; for code C; for i € [2] such that: (i) Ay can decode
from e errors and s erasures such that 2e + s < dy and (ii) Ay can decode from
|(d2 — 1)/2] errors. Then arque that one can correct |(d — 1)/2] errors for C; © Cs.
Hint: Given a received word (y,,ys) F(']’ X F[l’ first apply As ony,—y,. Then create an intermediate

received word for A;.

4. We will now consider a recursive construction of a binary linear code that uses the &
operator. For integers 0 < r < m, we define the code C(r,m) as follows:

o C(r,r) =T and C(0,r) is the code with only two codewords: the all ones and all
zeroes vector in IFy.

e Forl<r<m,C(r,m)=C(rm—1)eC(r—1m-—1).

Determine the parameters of the code C(r,m).

Exercise 2.20. Let Cy be an [ny, ki, di]s binary linear code, and Coy an [no, ke, ds] binary
linear code. Let C C Fy*™"™ be the subset of ny X ny matrices whose rows belong to Cy and
whose columns belong to Cy. C' is called the tensor of Cy and Cy and is denoted by C & Cy.

Prove that C' is an [nyng, k1ke, dids]e binary linear code.

Further, if G1 and Go are generator matrices of Cy and Cs, construct a genertor matriz
of C1 ® Cy from Gy and Gy. In particular, argue that given Gy and G, a generator matriz
of C1 ® Cy can be computed in polynomimal time.

Hint: For the latter problem, it might be useful to think of the codewords and messages as vectors instead of

matrices.
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Exercise 2.21. In Section 2.4 we considered the binary Hamming code. In this problem we
will consider the more general q-ary Hamming code. In particular, let g be a prime power
and r > 1 be an integer. Define the following r x n matriz H,,, where each column is an
non-zero vector from I, such that the first non-zero entry is 1. For example,

01 11
Hap = (1 01 2)
In this problem we will derive the parameters of the code. Define the generalized Hamming
code Cp 4 to be the linear code whose parity check matriz is H,,. Argue that

1. The block length of Cpyq isn = %.
2. Chqr has dimension n —r.

3. Chqr has distance 3.

Exercise 2.22. In Section 2.0, we considered the binary Hadamard code. In this problem we
will consider the more general q-ary Hadamard code. In particular, let g be a prime power
and r > 1 be an integer. Define the following r X q" matrix Hw, where each columns in a
vector in ;. In this problem we will derive the parameters of the code. Define the generalized

Hadamard code Caqrq to be the linear code whose parity check matriz is ﬁw. Argue that
1. The block length of Cradyrq isn =q".

2. CHad,qr has dimension r.

3. CHad,qr has distance <1 — %) ‘7.
Exercise 2.23. Design the best 6-ary code (family) with distance 3 that you can.

Hint: Start with a 7-ary Hamming code.

Exercise 2.24. Prove that the [n,1,n]s code for odd n (i.e. the code with the all zeros and
all ones vector as it only two codewords) attains the Hamming bound (Theorem 1.7.2).

Exercise 2.25. Let C be an [n, k|, code with generator matriz G. Then given a codeword
¢ € C one can compute the corresponding message in time O(kn?).

Exercise 2.26. Given a ¢ € Cy,, one can compute the corresponding message in time O(n).

Exercise 2.27. Let C be an (n,k), code. Prove that if C' can be decoded from e errors in
time T'(n), then it can be decoded from n + ¢ errors in time O((nqg)®-T(n)).

Exercise 2.28. Show that the bound of kd of the number of ones in the generator matriz of
any binary linear code (see Exercise 1.14) cannot be improved for every code.
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Exercise 2.29. Let C be a linear code. Then prove that (CL)L =C.

Exercise 2.30. Note that for any linear code C, the codewords 0 is in both C and C*+. Show
that there exists a linear code C' such that it shares a non-zero codeword with C*.

Exercise 2.31. We go into a bit of diversion and look at how finite fields are different from
infinite fields (e.g. R). Most of the properties of linear subspaces that we have used for linear
codes (e.g. notion of dimension, the existence of generator and parity check matrices, notion
of duals) also hold for linear subspaces over R.** One trivial property that holds for linear
subspaces over finite fields that does not hold over R is that linear subspaces over F, with
dimension k has size ¢ (though this is a trivial consequence that B, is a finite field while R
is an infinite field). Next, we consider a more subtle distinction.
Let S C R"™ be a linear subspace over R and let S* is the dual of S. Then show that

Snst=1{o0}.

By contrast, linear subspaces over finite fields can have non-trivial intersection with their
duals (see e.g. Exercise 2.30).

Exercise 2.32. A linear code C is called self-orthogonal if C' C C*. Show that
1. The binary repetition code with even number of repetitions is self-orthogonal.

2. The Hadamard code Crqa, 15 self-orthogonal.

Exercise 2.33. A linear code C is called self dual if C = C*. Show that for
1. Any self dual code has dimension n/2.

2. Prove that the following code is self-dual

{(x,x)|x € IF’QC}

Exercise 2.34. Given a code C' a puncturing of C' is another code C' where the same set
of positions are dropped in all codewords of C. More precisely, if C C X" and the set of
punctured positions is P C [n], then the punctured code is {(¢;)igp|(c1,...,cn) € C}.

Prove that a linear code with no repetitions (i.e. there are no two positions i # j such that
for every codeword ¢ € C, ¢; = ¢;) is a puncturing of the Hadamard code. Hence, Hadamard
code is the “longest” linear code that does not repeat.

1A linear subspace S C R" is the same as in Definition 2.2.2 where all occurrences of the finite field Fy,
is replaced by R.
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Exercise 2.35. In this problem we will consider the long code. For the definition, we will
use the functional way of looking at the ambient space as mentioned in Remark 1.2.2. A
long code of dimension k is a binary code such that the codeword corresponding to x = IF;“,
is the function f : {0,1}2" — {0,1} defined as follows. For any m € {0,1}%, we have
f((Ma)aers) = mx. Derive the parameters of the long code.

Finally, argue that the long code is the code with the longest block length such that the
codewords do not have a repeated coordinate (i.e. there does not exists i # j such that for
every codeword ¢, ¢; = ¢;). (Contrast this with the property of Hadamard code above.)

Exercise 2.36. Given a linear code C' C Fy, define its generating function to be a 2n-
variate polynomial over variables x = (x1,...,2,) andy = (y1,...,Yyn) given by Go(x,y) =

Y wee Pu(x,y) where Py(x,y) = (H{ie[n]\wizo} xz) : (H{z’e[n]mzl} yi>. For w € {0,...,n},
let A¢ denote the number of codewords of weight w and let Ac(z) = Y _, Abz" be the
“weight enumerator” polynomial of C'.

1. For every w € Fy, prove that Py(x +y,x —y) = > cpn (=)W P (x,y).

veFy

2. Prove that Goo(x,y) = ‘_(1;|GC(X +y,x—y).

3. Prove that Ac(z) = Ge(1,...,1,2,...,2).

4. Prove that Ag1(z) = (1|+Cz‘)n Ac (ﬁj)

5. Conclude that AY,, = ﬁZZzo AL (X (=D (M), In other words, the dis-
tributions of the weights (A%, ..., A%) of the primal code completely determine the

distributions of weights (A%, ..., A%.,) of the dual code!

2.8 Bibliographic Notes

The background material on algebra is essentially folklore. Readers interested in a more
extensive treatment are referred to classical texts such as by Artin [2]. For a perspective
focussing more on finite fields, see the text by Lidl and Niederreiter [28]. Linear codes arose
already in the paper of Hamming [21] and were systematically studied by Slepian [39]. The
answer to Question 1.7.4 was given by van Lint [41] and Tietavainen [40]. Hadamard codes
(Definition 2.6.2) are named after the work of mathematician Jacques Hadamard and in
particular the notion of Hadamard matrices which are self-orthogonal matrices with +1/-1
entries.

Exercises 2.14 and 2.15 come from the theory of pseudorandomness, which we will cover
more extensively in Chapter ??. The long codes in Exercise 2.35 were introduced by Bellare,
Goldreich and Sudan [4]. Exercise 2.36 is based on the MacWilliams Identity proved by
MacWilliams [29)].
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Chapter 3

Probability as Fancy Counting and
the g-ary Entropy Function

In the chapters to come we will explore questions of the form: “Given n, k,d and ¢ does an
(n,k,d), code exist?” To answer such questions, we will apply the “probabilistic method” —
the method that demonstrates the existence of an object with a given property by showing
that a randomly chosen object has the property with positive probability. To elaborate on
this sentence, we need to introduce the basic language and tools of probability theory which
we do in Section 3.1.

We then introduce the probabilistic method in Section 3.2. We even apply the method
to answer a very simple question:

Question 3.0.1. Does there exist a [2,2,1]s code?

We note that the answer to the above question is trivially yes: just pick the generator
matrix to be the 2 x 2 identity matrix. But our proof will have the advantage of generalizing
to broader settings, though we save the generalizations for later chapters.

Finally in Section 3.3 we introduce the “entropy function” which turns out to be central
in the understanding of limits of codes (both existence and non-existence).

3.1 A Crash Course on Probability

In this section we review basic concepts in probability theory, specialized to the needs of this
book. Specifically, we introduce distributions, events and random variables, and give some
tools to analyze them.

In this book, we will only consider probability distributions defined over finite spaces. In
particular, given a finite domain D, a probability distribution is defined as a function

p: D — [0,1] such that Zp(:c) =1,

zeD

where [0, 1] is shorthand for the interval of all real numbers between 0 and 1.
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| G JUG) | Vo | Vor | Vio | Vi | | G UG | Vio | Vor [ Vio [ Vi |

M(),o’(),o % 0 0 0 0 Ml,O,O,O 1_16 0 0 1 1
Mooo1 | 15 0O 1 1] 01 Migor | 15 0| 1 1 | 2
Mooio | 1 O | 1101 Moo | 15 0| 1 1|0
Mopi1 | 15 0|2 1] 0| 2 Migi1 | 15 0| 2 |1 1
Moioo | 15 0|0 |11 Moo | 15 0] 01| 212
MO,I,O,I % O 1 1 0 M1,170,1 1_16 0 ]. 2 1
Moo | 15 0| 1 1| 2 Mijio| 5 0| 1] 2|1
Moiaa| 7z | 0] 2] 11 Mg | = | 0] 2] 210

Table 3.1: Uniform distribution over F3** along with values of four random variables.
(Eq. (3.1) defines the notation used in the G /first column of the tables.)

An event E is a predicate over the domain D, i.e. it maps every element of D to “true”
or “false”. Equivalently an event is a subset of the domain D, i.e., those elements that
are mapped to true. We switch between “logical” or "set-theoretic” notation to denote
combinations of events. So the disjunction of events E; and E; may be denoted E; V E, or
E; UE,. Similarly, the conjunction of E; and E, may be denoted E; A Ey or E; N E,y; and
the negation of E; may be denote —E; or E;.

In this book, we will primarily deal with the following special distribution:

Definition 3.1.1 (Uniform Distribution). The uniform distribution over D, denoted by Up,
s given by

Pr(r) = —
@) =

Typically, we will drop the subscript when the domain D is clear from the context.

for every x € D.

For example, consider the domain D = IF%XZ, i.e. the set of all 2 x 2 matrices over 5.
(Note that each such matrix is a generator matrix of some [2, 2]; code.) The first two columns
of Table 3.1 list the elements of this D along with the corresponding probabilities for the
uniform distribution, with My, b,0.610.6,; denoting the following matrix

bog b
Mbomblo,blo,bu = (b(l)g bi?) . (31)

Typically, we will be interested in a real-valued function defined on D and how it behaves
under a probability distribution defined over ID. This is captured by the notion of a random
variable!:

Definition 3.1.2 (Random Variable). Let D be a finite domain and I C R be a finite*
subset. Let p be a probability distribution defined over D. A random variable is a function:

V:D-— 1.

'We note that the literature on probability theory allows for more general random variables, but for our
purposes we restrict only to real-valued ones.
2In general, I need not be finite. However, for this book this definition suffices.
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The expectation of V' is defined as

B[V = 3 ple) - V().

zeD

For example, given (7, 7) € {0,1}?, let V;; denote the random variable V;;(G) = wt ((4, ) - G),
for any G € F3**. The last four columns of Table 3.1 list the values of these four random
variables.

Of particular interest in this book will be binary random variables, i.e., with I = {0, 1}.
In particular, given an event E over DD, we will define its indicator variable to be a function
¥g:D — {0,1} such that for any x € D

1 ifxzeklk
Wp(z) =
5(7) {0 otherwise.

e () - ()

In most cases we will shorten this notation to ¥ g(,) or simply ¥ g. Finally, sometimes we
will abuse notation and use E instead of ¥ g.

As a further use of indicator variables, consider the expectations of the four indicator
variables:

For example,

1

E [Fyp—o] = 16 7o = 1
1 1

E [HAV01=O] 4. E = Z (32)
1 1

E [“éVw:O] 4. E = Z (33)
1 1

E [HAVHZO] 4- E = Z (34)

3.1.1 Some Useful Results

Before we proceed, we record a simple property of indicator variables that will be useful.
(See Exercise 3.1.)

Lemma 3.1.3. Let E be any event. Then

E Wg| = Pr[E is true].

Next, we state a simple yet useful property of expectation of a sum of random variables:
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Proposition 3.1.4 (Linearity of Expectation). Given random variables Vi, ..., V,, defined
over the same domain D and with the same probability distribution p, we have

E|Y Vi|=> EMI.
i=1 i=1
Proof. For notational convenience, define V. =V; 4+ --- + V,,. Thus, we have
EV]=) V() p) (3.5)

zeD

-5 (S o 36)
zeD =1

=33 V@) - pla) (3.7
=1 xeD

= 2_ElVi (3.8)

In the equalities above, (3.5) and (3.8) follow from the definition of expectation of a random
variable. (3.6) follows from the definition of V' and (3.7) follows by switching the order of
the two summations. [

As an example, we have
3
E Pvii=o +Hvio=0 +Hvii=0] = 7 (3.9)
Frequently, we will need to deal with the probability of the union of events. We will use

the following result to upper bound such probabilities:

Proposition 3.1.5 (Union Bound). Given m binary random variables Ay, ..., Ay, we have
i=1 i=1
Proof. For every i € [m], define

S; = {z € D|A;(z) = 1}.

Then we have

Pr (\/ AZ-> =1 = Y p) (3.10)
< Z > p(x) (3.11)
= Em:Pr[Ai =1]. (3.12)
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In the above, (3.10) and (3.12) follow from the definition of S;. (3.11) follows from the fact
that some of the z € U,S; get counted more than once. O

We remark that the union bound is tight when the events are disjoint. (In other words,
using the notation in the proof above, when S; N'S; = 0 for every i # j.)

As an example, let Ay = W¥y,,—o, A2 = Wy,,—0 and As = Wy, ,—o. Note that in this case
the event A; V Ay V Aj is the same as the event that there exists a non-zero m € {0, 1}? such
that wt(m - G) = 0. Thus, the union bound implies (that under the uniform distribution
over F3*?)

Pr [There exists an m € {0,1}*\ {(0,0)}, such that wt(mG) = 0] < (3.13)

>~ o

Finally, we present three bounds on the probability of a random variable deviating sig-
nificantly from its expectation. The first bound holds for any random variable:

Lemma 3.1.6 (Markov Bound). Let V' be a non-negative random variable. Then for any
t>0,
E[V]

In particular, for any a > 1,

Pr[V > a- E[V]]

VAN
Sl R

Proof. The second bound follows from the first bound by substituting t = a-E[V]. Thus,
to complete the proof, we argue the first bound. Consider the following sequence of relations:

EV]= > i -Pr[V =i+ > i-Pr[V=i (3.14)
> Ezmtz) - Pr[V =] o (3.15)
> t>t Pr[V = i] (3.16)
—t- ;rt[v > ). (3.17)

In the above relations, (3.14) follows from the definition of expectation of a random variable
and the fact that V' is non-negative. (3.15) follows as we have dropped some non-negative
terms. (3.16) follows by noting that in the summands i > ¢. (3.17) follows from the definition

of Pr[V > t].
The proof is complete by noting that (3.17) implies the claimed bound. [

The second bound is stated in terms of the wvariance of a random variable, which we
define first:
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Definition 3.1.7 (Variance). Let V' be a random variable. Its variance is defined as
Var[V] = E [(W _E [V])2] .
The standard deviation of V' is defined as o [V] = /Var [V].

We have the following bound:

Lemma 3.1.8 (Chebyschev Bound). Let V' be a random variable such that Var[V] # 0.
Then for any t > 0, we have

Var [V
PV —E[V]| > < 2V
t2
Proof. The claim follows from the the following sequence of relations:

Pr([V—E[V][>=Pr[(V-E[V]) >
LEV . 2E V1))
~ Var[V]
- =2

In the above the inequality follows from Markov’s inequality (Lemma 3.1.6) and the last
equality follows from definition of variance. [

The third bound works only for sums of independent random variables. We begin by
defining independent random variables:

Definition 3.1.9 (Independence). Two random variables A and B are called independent
if for every a and b in the ranges of A and B respectively, we have

Pr]A=a AN B =b|=Pr[A=a] -Pr[B=1].

For example, for the uniform distribution in Table 3.1, let A denote the bit Goo and B
denote the bit Go;. It can be verified that these two random variables are independent.
In fact, it can be verified all the random variables corresponding to the four bits in G are
independent random variables. (We’ll come to a related comment shortly.)

Another related concept that we will use is that of probability of an event happening
conditioned on another event happening:

Definition 3.1.10 (Conditional Probability). Given two events A and B defined over the
same domain and probability distribution, we define the probability of A conditioned on B as

Pr[A and B]

PrAIB] = =5
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For example, note that

4/16 1
PI‘[“AV0121|G070 = O] = / =

1/2 2
The above definition implies that two events A and B are independent if and only if
Pr[A] = Pr[A|B]. We will also use the following result later on in the book (see Exercise 3.2):

Lemma 3.1.11. For any two events A and B defined on the same domain and the probability
distribution:

Pr[A] = Pr[A|B] - Pr[B] + Pr[A|=B] - Pr[-B].

Next, we state a deviation bound that asserts that the sum of independent random
variables takes values close to its expectation with high probability. We only state it for
sums of binary random variables, which is the form that will be needed in the book. We
refer to this bound as the “Chernoff bound” though we note that this is part of a larger body
of work and the bibliographic notes give more details.

Theorem 3.1.12 (Chernoff Bound). Let X3, ..., X,, be independent binary random variables
and define X = > X;. Then the multiplicative Chernoff bound states that for 0 < e <1,

Pr[|X — E(X)| > cE(X)] < 2= FX)/3,
and the additive Chernoff bound states that

Pr{|X — E(X)| > em] < 2¢75™/2,

We omit the proof, which can be found in any standard textbook on randomized algo-
rithms.

Finally, we present an alternate view of uniform distribution over product spaces and
then use that view to prove a result that we will use later in the book. Given probability
distributions p; and py over domains D; and D, respectively, we define the product distribu-
tion p; X py over D x Dy as follows: every element (x,y) € Dy x Dy under p; X py is picked
by choosing x from D, according to p; and y is picked independently from Dy under py. This
leads to the following observation (see Exercise 3.4).

Lemma 3.1.13. For any m > 1, the distribution Up, xp,x..-xp,, &S identicali to the distribu-
tion Z/[]D)l X L{DQ X+ X Z/{]D)m-

For example, the uniform distribution in Table 3.1 can be described equivalently as
follows: pick each of the four bits in G independently and uniformly at random from {0, 1}.
We conclude this section by proving the following result:

3We say two distributions p; and p, on D are identical if for every x € D, p1(x) = pa(2).

25



Lemma 3.1.14. Given a non-zero vector m € IF]; and a uniformly random k x n matrizc G
over Fy, the vector m - G is uniformly distributed over F.

Proof. Let the (j,7)th entry in G (1 < j < k,1 <1i < n) be denoted by g¢;;. Note that
as G is a random k x n matrix over I, by Lemma 3.1.13, each of the g;; is an independent
uniformly random element from F,. Now, note that we would be done if we can show that for
every 1 <i <, theith entry in m-G (call it b;) is an independent uniformly random element
from F,. To finish the proof, we prove this latter fact. If we denote m = (my, ..., my), then
b; = Zle m;gj;. Note that the disjoint entries of G participate in the sums for b; and b; for
t # j. Given our choice of GG, this implies that the random variables b; and b; are independent.
Hence, to complete the proof we need to prove that b; is a uniformly independent element
of F,. The rest of the proof is a generalization of the argument we used in the proof of
Proposition 2.6.3.

Note that to show that b; is uniformly distributed over Iy, it is sufficient to prove that
b; takes every value in I, equally often over all the choices of values that can be assigned to
G1is 9ois - - - > Gri- NOW, as m is non-zero, at least one of the its element is non-zero. Without
loss of generality assume that my # 0. Thus, we can write b; = my¢1; +Zf:2 m;g;i. Now, for

every fixed assignment of values to ¢a;, gai, - - - , grs (note that there are ¢®~! such assignments),
b; takes a different value for each of the ¢ distinct possible assignments to gy; (this is where
we use the assumption that m; # 0). Thus, over all the possible assignments of gy;, ..., gri,
b; takes each of the values in F, exactly ¢~ times, which proves our claim. [

3.2 The Probabilistic Method

The probabilistic method is a very powerful method in combinatorics which can be used to
show the existence of objects that satisfy certain properties. In this course, we will use the
probabilistic method to prove existence of a code C with certain property P. Towards that
end, we define a distribution D over all possible codes and prove that when C is chosen
according to D:

Pr [C has property P] > 0 or equivalently Pr [C doesn’t have property P] < 1.

Note that the above inequality proves the existence of C with property P.

As an example consider Question 3.0.1. To answer this in the affirmative, we note that
the set of all [2, 2], linear codes is covered by the set of all 2 x 2 matrices over Fy. Then, we
let D be the uniform distribution over F3*?. Then by Proposition 2.3.6 and (3.13), we get
that

3
Pr [There is no [2,2, 1], code] <

-<1
Ugaxz — 4 ’
2

which by the probabilistic method answers the Question 3.0.1 in the affirmative.
For the more general case, when we apply the probabilistic method, the typical approach
will be to define (sub-)properties P, ..., P, such that P = Py A P, A Ps3... A P, and show
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that for every 1 <i < m:
— 1
Pr [C doesn’t have property P;| = Pr [R] < —.
m

Finally, by the union bound, the above will prove thatf Pr [C doesn’t have property P| < 1,
as desired.

As an example, an alternate way to answer Question 3.0.1 in the affirmative is the
following. Define P, = Wy, 51, Py = ¥y,,>1 and Py = Wy,,>1. (Note that we want a [2, 2]y
code that satisfies P, A P, A P3.) Then, by (3.2), (3.3) and (3.4), we have for i € [3],

Pr [C doesn’t have property P] = Pr [P] = = <

1
37

NN

as desired.

Finally, we mention a special case of the general probabilistic method that we outlined
above. In particular, let P denote the property that the randomly chosen C satisfies f(C) < b.
Then we claim (see Exercise 3.5) that E[f(C)] < b implies that Pr[C has property P] > 0.
Note that this implies that E[f(C')] < b implies that there exists a code C such that f(C) < b.

3.3 The g-ary Entropy Function

Finally, in this chapter we introduce a fundamental function — the “entropy” function —

that plays a central role in the analysis of the limits of codes. For example, in Section 4.1

of Chapter 4 we will show how this function captures an upper bound on the rate of codes

as a function of the relative distance. Later in Section 4.2 of Chapter 4 we will see that this

function captures a lower bound on the rate of codes obtained by the probabilistic method.
We begin with the definition of the entropy function.

Definition 3.3.1 (¢g-ary Entropy Function). Let ¢ be an integer and x be a real number such
that ¢ > 2 and 0 < x < 1. Then the g-ary entropy function is defined as follows:

Hy(z) = zlog,(q — 1) — zlog,(z) — (1 — z)log, (1 — z).

Figure 3.1 presents a pictorial representation of the H, function for the first few values
of ¢q. For the special case of ¢ = 2, we will drop the subscript from the entropy function
and denote Hy(x) by just H(z), that is, H(x) = —xlogx — (1 — x) log(1 — x), where log z is
defined as log,(x) (we are going to follow this convention for the rest of the book).

Under the lens of Shannon’s entropy function, H(z) denotes the entropy of the distri-
bution over {0, 1} that selects 1 with probability z and 0 with probability 1 — z. However,
there is no similar analogue for the more general H,(z). The reason why this quantity will
turn out to be so central in this book is that it is very closely related to the “volume” of a
Hamming ball. We make this connection precise in the next subsection.

4Note that P=P, VP, V---V P,,.
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Figure 3.1: A plot of H,(z) for ¢ = 2,3 and 4. The maximum value of 1 is achieved at
r=1-1/q.

3.3.1 Volume of Hamming Balls

It turns out that in many of our combinatorial results, we will need good upper and lower
bounds on the volume of a Hamming ball. Next we formalize the notion of the volume of a
Hamming ball:

Definition 3.3.2 (Volume of a Hamming Ball). Let ¢ > 2 and n > r > 1 be integers. Then
the volume of a Hamming ball of radius r is given by

Voly(r,n) = |B,(0,7)] = Z (”) (q— 1)

: 1
=0

The choice of 0 as the center for the Hamming ball above was arbitrary: since the volume
of a Hamming ball is independent of its center (as is evident from the last equality above),
we could have picked any point as the center.

We will prove the following result:

Proposition 3.3.3. Let ¢ > 2 be an integer and 0 < p <1 — é be a real number. Then:

(i) Vol,(pn,n) < ¢Ha®"; and

(ii) for large enough n, Vol,(pn,n) > ¢fla®@n—o)
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Proof. We start with the proof of (i). Consider the following sequence of relations:

L= pr-p)
_ g(?)piu—p)”i (3.18)
_ (1) -+ Z (7)o
> (M)p-pr (3.19
- £ (uv () 0o
- S (om0 (i)
> (Na-va-rr (=) (320)
> Vol (pm, n)g o 3.2

In the above, (3.18) follows from the binomial expansion (3. 9) follows by dropping the
second sum and (3.20) follows from the facts that —f7— <1 (as® p < 1-—1/ q) Rest

of the steps except (3 22) follow from rearranging the terms. (3.22) follows as ¢~ HaP)n =
o D44
() a-puom
(3.22) implies that

1 > Vol,(pn, n)q_Hq (p)n7

which proves ().

We now turn to the proof of part (i7). For this part, we will need Stirling’s approximation
for n! (Lemma A.1.2).

5Indeed, note that m < 1is true if ;% § , which in turn is true if p < =, where the last

step follows from Lemma A.2.1.



By the Stirling’s approximation, we have the following inequality:

ny n!
(pn) ~ (p)!((1 = p)n)!
(n/e)" , 1 M =Da(pn)—Da((1-p)n)
(pn/e)r((1 —p)n/e)=pn . /2mp(1 — p)n

L —1p)(1—p)n ), (3.23)

M) —=Aa(pn)—Aa((1—p)n)
where £(n) = N .

Now consider the following sequence of relations that complete the proof:

Vol,(pn,n) > < " ) (g — 1) (3.24)

pn
(¢ — 1)
=] ((n) (3.25)

(
)

1-p)n ’

> gHalp)n—oln (3.26)

In the above (3.24) follows by only looking at the last term in the sum that defined Vol,(pn,n).
(3.25) follows from (3.23) while (3.26) follows from the definition of H,(-) and the fact that
for large enough n, £(n) is ¢~°™. ]

Next, we consider how the g-ary entropy function behaves for various ranges of its pa-
rameters.

3.3.2 Other Properties of the ¢g-ary Entropy function

This section uses asymptotic analysis in few places. Reader who wish to brush up their
knowledge of asymptotic analysis are referred to Appendix ?77.
We begin by recording the behavior of the g-ary entropy function for large q.

Proposition 3.3.4. For small enough ¢, 1 — Hy(p) > 1 —p—¢c for every 0 < p<1—1/q
if and only if q is 220/9)

Proof. We first note that by definition of H,(p) and H(p),
Hy(p) = plog,(¢ — 1) — plog, p — (1 — p)log,(1 - p)
= plog,(q —1) + H(p)/log, q.

Now if ¢ > 2%, we get that
Hy(p) <p+te

as log,(¢ —1) < 1 and H(p) < 1. Thus, we have argued that for ¢ > 2172 we have
1—H,(p) >1—p—e,as desired.
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Next, we consider the case when ¢ = 2°//9). We begin by claiming that for small enough
87
if ¢ > 1/£* then log,(g—1)>1~—c¢.

Indeed, log,(¢ —1) =1+ (1/Ing)In(1 —1/q) =1 -0 ( L >,6 which is at least 1 — ¢ for

qlng
q > 1/£% (and small enough ¢).
Finally, if ¢ = 20(%), then for fixed p,

H(p)/logq = ¢ w(l).
Then for ¢ = 2°(2) (but ¢ > 1/£2) we have
plog, (¢ — 1)+ H(p)/logg > p—e+e-w(l)>p+e,
which implies that
1—Hy(p) <1—=p—c¢,

as desired. For ¢ < 1/e?, Lemma 3.3.5 shows that 1 — Hy(p) <1 — Hy2(p) <1—p—e¢, as
desired. ]

We will also be interested in how H,(x) behaves for fixed = and increasing ¢:

Lemma 3.3.5. Let ¢ > 2 be an integer and let 0 < p < 1 —1/q, then for any real m > 1
such that

1 \*!
qm_1 > (1 + C]——1> R (327)
we have

Hy(p) = Hgm(p).-

Proof. Note that H,(0) = Hm(0) = 0. Thus, for the rest of the proof we will assume
that p € (0,1 —1/¢].
As observed in the proof of Proposition 3.3.4, we have

log(g —1) 1

Hy(p) =p oz g + H(p) - ogq

Using this, we obtain

Hylp) ~ Hyelp) = p (L) - SEIE D) gy (- )

log q mlogq log q B mlogq

The above in turn implies that

- mlogq - (Hy(p) = Hin () = Toglg = 1" = log(q” = 1) + @m 1)

The last equality follows from the fact that by Lemma A.2.2, for 0 < z < 1, In(1 — z) = —O(x).
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H(1-1/q)
1-1/q

1
=log(qg—1)™ —log(¢™ — 1)+ (m — 1) <log . i 7 + qof?L)
(q=D™ (g \"7' m
:l . . q—1

m—1

_1 . mfl. q—1

:log<(q ) 4" g )
qm —1

>0 (3.29)

> log(q — 1)™ —log(¢™ — 1) + (m—-1)  (3.28)

In the above (3.28) follows from the fact that H(p)/p is decreasing” in p and that p < 1—1/q.
(3.29) follows from the claim that

s

m—

(q—1)-qgo1t >q.

Indeed the above follows from (3.27).
Finally, note that (3.29) completes the proof. O

Since (1 + 1/z)* < e (by Lemma A.2.5), we also have that (3.27) is also satisfied for

m>14+ ﬁ. Further, we note that (3.27) is satisfied for every m > 2 (for any ¢ > 3), which
leads to the following (also see Exercise 3.6):

Corollary 3.3.6. Let g > 3 be an integer and let 0 < p < 1 —1/q, then for any m > 2, we
have

Hy(p) = Hym(p).

Next, we look at the entropy function when its input is very close to 1.

Proposition 3.3.7. For small enough ¢ > 0,

1
Hq<1———s) §1—cq62,
q

where ¢, is a constant that only depends on q.

Proof. The intuition behind the proof is the following. Since the derivative of H,(x) is
zero at © = 1 — 1/q, in the Taylor expansion of H,(1 —1/q — ¢) the ¢ term will vanish. We

"Indeed, H(p)/p = log(1/p) — (1/p —1)log(1 — p). Note that the first term is decreasing in p. We claim
that the second term is also decreasing in p — this e.g. follows from the observation that —(1/p—1)In(1—p) =
(1=p)(1+p/2'+p?/3+---)=1—p/2 — p*(1/2 — 1/3!) — - -+ is also decreasing in p.
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will now make this intuition more concrete. We will think of ¢ as fixed and 1/ as growing.
In particular, we will assume that ¢ < 1/¢. Consider the following equalities:

=12 P () (oo )
o ({12 o (282
e ) (o))
et () (2

52q2 82q2
_ — — 3.30
g—1p 0T 2)} (3.30)

£q €2q2

-G 5w

1 ¢ 2¢ EPg-2)
=1 N — |- — 31
+ole) lnq[ 201 q-1 2(q—1)2} (33
€2q2
= 1-——* 2
2Ing(q—1) + o)
€2q2
4lng(g—1)
(3.32)

(3.30) follows from the fact that for |x| < 1, In(14+x) =z —2?/2+23/3—... (Lemma A.2.2)
and by collecting the € and smaller terms in o(¢?). (3.31) follows by rearranging the terms
and by absorbing the 3 terms in o(¢?). The last step is true assuming ¢ is small enough. [

Next, we look at the entropy function when its input is very close to 0.

Proposition 3.3.8. For small enough ¢ > 0,

1 1
}{q<€) =0 (izggg '610g (;;)j)
Proof. By definition

H,(e) = elog,(q — 1) +£log,(1/¢) + (1 — £) log, (1/(1 — £)).
Since all the terms in the RHS are positive we have

H,(e) > elog(1/e)/loggq. (3.33)
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Further, by Lemma A.2.2, (1 —¢)log,(1/(1 —¢)) < 2¢/Ingq for small enough e. Thus, this
implies that

H,(e) < 24lg=1) €+ = ~eln (1) . (3.34)

Ingq Ingq €
(3.33) and (3.34) proves the claimed bound.

]

We will also work with the inverse of the g-ary entropy function. Note that H,(-) on
the domain [0,1 — 1/¢] is a bijective map into [0, 1]. Thus, we define H,'(y) = « such that
H,(z) =y and 0 <z <1—1/q. Finally, we will need the following lower bound:

Lemma 3.3.9. For every 0 <y <1 —1/q and for every small enough ¢ > 0,
-1 27 1 -1
Hq (y—g /cq) ZHq (y)_87
where ¢, > 1 is a constant that depends only on q.

Proof. It is easy to check that H Y(y) is a strictly increasing convex function when
y € [0,1]. This implies that the derivative of H_'(y) increases with y. In particular,
(H,')'(1) > (H; ') (y) for every 0 <y < 1. In other words, for every 0 <y < 1, and (small
enough) § > 0,

q q

Hy'(y) - H,'(y—=0) _H'(1)—H,'(1 - o)

) - o
Proposition 3.3.7 along with the facts that H,'(1) = 1—1/q and H, ' is increasing completes
the proof if one picks ¢, = max(1,1/c,) and 6 = £*/c,. O

3.4 Exercises
Exercise 3.1. Prove Lemma 3.1.5.
Exercise 3.2. Prove Lemma 3.1.11.

Exercise 3.3. In this exercise, we will see a common use of the Chernoff bound (Theo-
rem 3.1.12). Say we are trying to determine an (unknown) value x € F to which we have
access to via a randomized algorithm A that on input (random) inputr € {0,1}™ outputs an
estimate A(r) of x such that
1
Pr[A(r) =z] > 5T
for some 0 < v < % Then show that for any t > 1 with O (%) calls to A one can determine

x with probability at least 1 — e™".

Hint: Call A with independent random bits and take majority of the answer and then use the Chernoff bound.

Exercise 3.4. Prove Lemma 3.1.13.
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Exercise 3.5. Let P denote the property that the randomly chosen C satisfies f(C) < b.
Then E[f(C)] < b implies that Pr[C has property P] > 0.

Exercise 3.6. Prove that for any Q > q> 2 and p <1—1/q, we have Hgy(p) < H,(p).

Exercise 3.7. Prove that for p < %, we have Hy(p) < O (plogp).

3.5 Bibliographic Notes

The Chernoff bounds of this chapter come from a family of bounds on the concentration
of sums of random variables around their expectation. They originate with the work of
Chernoff [10] though Chernoff himself attributes the bound to personal communication with
Rubin [3, Page 340]. These bounds and variations are ubiquitous in information theory and
computer science — see for instance [11, 32, 31]. Proofs of various concentration bounds can
e.g. be found in [12].

The use of the probabilistic method in combinatorics seems to have originated in the
early 40s and became especially well known after works of Erdés, notably [15]. Shannon’s
adoption of the method in [37] is one of the first applications in a broader setting. For more
on the probabilistic method, see the book by Alon and Spencer [1].

The entropy function also dates back to Shannon [37]. Shannon’s definition is more
general and applies to discrete random variables. Our specialization to a two parameter
function (namely a function of ¢ and p) is a special case derived from applying the original
definition to some special random variables.
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Chapter 4

What Can and Cannot Be Done-1

In this chapter, we will try to tackle Question 1.8.2. We will approach this trade-off in the
following way:

If we fix the relative distance of the code to be §, what is the best rate R that
we can achieve?

While we will not be able to pin down the exact optimal relationship between R and 4, we
will start establishing some limits. Note that an upper bound on R is a negative result in
that it establishes that codes with certain parameters do not exist. Similarly, a lower bound
on R is a positive result.

In this chapter, we will consider only one positive result, i.e. a lower bound on R called
the Gilbert-Varshamov bound in Section 4.2. In Section 4.1, we recall a negative result that
we have already seen— Hamming bound and state its asymptotic version to obtain an upper
bound on R. We will consider two other upper bounds: the Singleton bound (Section 4.3),
which gives a tight upper bound for large enough alphabets (but not binary codes) and the
Plotkin bound (Section 4.4), which gives a stronger upper bound than Singleton bound for
binary codes.

4.1 Asymptotic Version of the Hamming Bound

We have already seen an upper bound in Section 1.7 due to Hamming. However, we had
stated this as an upper bound on the dimension k in terms of n, g and d. In this section we
convert this into a relation on R versus 9.

Consider any (n,k,d), code with rate R = k/n and relative distance § = d/n. Recall
that Theorem 1.7.2 implies the following:

k
R=2
n

<1-
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Recall further that Proposition 3.3.3 states the following lower bound on the volume of a

Hamming ball:
d—1 5 |n—o(n
v (|15 ) 2 el

Taking logarithms to base ¢ of both sides above, and dividing by n yields that the second
term in the right hand side of the inequality above is lower bounded by H,(6/2) —o(1), where
the o(1) term tends to 0 as n — oco. Thus Theorem 1.7.2 implies that for a g-ary of code C
of rate R, relative distance ¢ and block length n, we have:

R<1-H, (g) +o1), (4.1)

where the o(1) term tends to 0 as n — oo. Thus for an infinite family of g-ary codes C, by
taking limits as n — oo, we get the following asymptotic Hamming bound (see Exercise 4.1).

Proposition 4.1.1 (Asymptotic Hamming Bound). Let C be an infinite family of q-ary
codes with rate R = R(C) and relative distance § = 6(C). Then we have:

ner-n(2)

Figure 4.1 gives a pictorial description of the asymptotic Hamming bound for binary
codes.

4.2 Gilbert-Varshamov Bound

Next, we will switch gears by proving our first non-trivial lower bound on R in terms of 9.
(In fact, this is the only positive result on the R vs § tradeoff question that we will see in
this book.) In particular, we will prove the following result:

Theorem 4.2.1 (Gilbert-Varshamov Bound). Let ¢ > 2. For every 0 < § < 1 — é there
exists a family of g-ary codes C with rate R(C) > 1 — H,(0) and relative distance 6(C) > 9.
If q is a prime power then there exists such a q-ary family of linear codes. Furthermore, for
every 0 < e < 1— H,(J) and integer n, if a matriz G is picked uniformly from ]F‘];X” for
k=n(l—H,0)—c¢), then G generates a code of rate 1 — H,(0) — ¢ and relative distance at
least 0 with probability strictly greater than 1 — q¢~=".

The bound of the theorem is referred to as the GV bound. For a pictorial description of
the GV bound for binary codes, see Figure 4.1. We will present the proofs for general codes
and linear codes in Sections 4.2.1 and 4.2.2 respectively.

In what follows we first prove the existence of a non-linear code of rate 1 — H,(d) and
relative distance at least 0. Later we show how to get a linear code, and with high probability
(when ¢ > 0). (Note that the existence of a linear code is implied by the final part using
e=0.)
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Hammilng bound
GV bound

Figure 4.1: The Hamming and GV bounds for binary codes. Note that any point below the
GV bound is achievable by some code while no point above the Hamming bound is achievable
by any code. In this part of the book we would like to push the GV bound as much up as
possible while at the same time try and push down the Hamming bound as much as possible.

4.2.1 Greedy Construction

We will prove Theorem 4.2.1 for general codes by a greedy construction described next:
Fix an integer n and let d = dn. Start with the empty code C' C [¢]" and then keep on
adding strings to C' that are at Hamming distance at least d from all the existing words in
C'. Algorithm 4.2.1 presents a formal description of the algorithm and Figure 4.2 illustrates
the first few executions of this algorithm.

Algorithm 4.2.1 Gilbert’s Greedy Code Construction
INPUT: n,q,d
OuTpPUT: A code C C [¢q]" of distance d > 1
1 C«+ 0
2: WHILE there exists a v € [¢]" such that A(v,¢) > d for every ¢ € C' DO
3: Add v to C
4: RETURN C'

We claim that Algorithm 4.2.1 terminates and the C' that it outputs has distance d. The
latter is true by step 2, which makes sure that in Step 3 we never add a vector ¢ that will
make the distance of C' fall below d. For the former claim, note that, if we cannot add v
at some point, we cannot add it later. Indeed, since we only add vectors to C, if a vector
v € [¢]" is ruled out in a certain iteration of Step 2 because A(c,v) < d, then in all future

71



N\

(q1"

Figure 4.2: An illustration of Gilbert’s greedy algorithm for the first five iterations.

iterations, we have A(v,c) < d and thus, this v will never be added in Step 3 in any future
iteration.

The running time of Algorithm 4.2.1 is ¢°™. To see this, note that Step 2 in the
worst-case could be repeated for every vector in [¢]”, that is at most ¢" times. In a naive
implementation, for each iteration, we cycle through all vectors in [¢]™ and for each vector
v € [q]", iterate through all (at most ¢™) vectors ¢ € C' to check whether A(c,v) < d. If no
such ¢ exists, then we add v to C'. Otherwise, we move to the next v. However, note that
we can do slightly better— since we know that once a v is “rejected” in an iteration, it’ll keep
on being rejected in the future iterations, we can fix up an ordering of vectors in [¢]" and for
each vector v in this order, check whether it can be added to C or not. If so, we add v to C,
else we move to the next vector in the order. This algorithm has time complexity O(ng*"),
which is still ¢©™.

Further, we claim that after termination of Algorithm 4.2.1

U B(c,d —1) = [¢]".

ceC

This is because if the above is not true, then there exists a vector v € [¢]" \ C, such
that A(v,c¢) > d and hence v can be added to C. However, this contradicts the fact that
Algorithm 4.2.1 has terminated. Therefore,

U Ble.d—1)| =¢". (4.2)

ceC
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It is not too hard to see that

> Ble,d—1)| >

ceC

UB(C d—

ceC

> |Ble.d—1)| > q"

ceC

which by (4.2) implies that

or since the volume of a Hamming ball is translation invariant,
Z‘/olq(d —1,n) > q".
ceC

Since D . Voly(d —1,n) = Vol,(d — 1,n) - |C|, we have

mn

cl > m
ﬁ (4.3)
q"(l—Hq(ts))’
as desired. In the above, (4.3) follows from the fact that
Vol,(d—1,n) < Vol,(0n,n)
< gt (4.4)

where the second inequality follows from the upper bound on the volume of a Hamming ball
in Proposition 3.3.3.

We thus conclude that for every ¢, n and 0 there exists a code of rate at least n(1—H,(0)).
We state this formally as a lemma below.

Lemma 4.2.2. For every paw‘ of posztwe integers m,q and real 6 € [0,1] there exists an

(n,k,dn), code satisfying ¢~ > —Volq(d )

In particular, for every positive integer q and real 6 € [0,1 — 1/q| there exists an infinite
family of g-ary codes C' of rate R and distance § satisfying R > 1 — H,(6).

It is worth noting that the code from Algorithm 4.2.1 is not guaranteed to have any
special structure. In particular, even storing the code can take exponential space. We have
seen in Proposition 2.3.3 that linear codes have a much more succinct representation. Thus,
a natural question is:

Question 4.2.3. Do linear codes achieve the R > 1 — H,(§) tradeoff that the greedy con-
struction achieves?

Next, we will answer the question in the affirmative.
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4.2.2 Linear Code Construction

Now we will show that a random linear code, with high probability, lies on the GV bound.
The construction is a use of the probabilistic method (Section 3.2).

Proof of Theorem 4.2.1. By Proposition 2.3.6, we are done if we can show that there
exists a k x n matrix G of full rank (for k¥ = (1 — H,(d) — €)n) such that

For every m € ]FZ \ {0}, wt(mG) > d.

We will prove the existence of such a G by the probabilistic method. Pick a random linear
code by picking a random k x n matrix G where each of kn entries is chosen uniformly and
independently at random from F,. Fix m € IFZ \ {0}. Recall that by Lemma 3.1.14, for a
random G, mG is a uniformly random vector from F. Thus, for every non-zero vector m,

we have
l,(d—1
Prlwt(mG) < d] Voly(d—1.1)
G q"
nHg(0)
q
< 4.5
7 (4.5)
S q_k : q_€n7 (46)

where (4.5) follows from the fact that the condition wt(mG) < d is equivalent to the condition
that mG € B(0,d — 1) and the fact that mG is uniformly random in [/, (4.5) follows from
(4.4) and (4.6) uses k < n(1 — H,(8) — €). There are ¢" — 1 non-zero vectors m and taking
the union over all such vectors and applying the union bound (Lemma 3.1.5) we have

Ii;r[There exists a non-zero m s.t. wt(mG) <d] < (¢"—1)-¢*.-¢"

< q e

Fix a matrix G € IF'; “™ such that for every non-zero M we have wt(mG) > d. The argument
above has shown that a random matrix has this property with probability strictly greater
than 1 — ¢~". By Proposition 2.3.6 this implies that the code generated by G has distance
at least d. To conclude the theorem we only need to argue that the code has dimension £k,
i.e., that G has full rank. But this also follows immediately from the property that for every
¢ > 0, we have that the probability that the code generated by a uniformly random matrix
has distance less than or equal to d is strictly less than 1. Thus using the probabilistic
method we conclude there exists a matrix G such that the code it generates in an [n, k, d|,
code. Furthermore if ¢ > 0 then the probability that the code does not have distance d is
exponentially small, specifically at most ¢*".
To conclude we need to verify that the code generated by G has dimension k, i.e., that
G has full rank. But note that an equivalent definition of G not having full rank is that
there exists a non-zero vector M such that mG = 0. But the existence of such a vector m
would imply wt(mG) = 0 < d contradicting the property that for every non-zero M we have
wt(mG) > d. We thus conclude that G generates a code of rate k/n =1 — H,(§) — ¢ and
relative distance §. The theorem follows.
O]
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Discussion. We now digress a bit to stress some aspects of the GV bound and its proof.
First, note that that proof by the probabilistic method shows something stronger than just
the existence of a code, but rather gives a high probability result. Furthermore, as pointed
out explicitly for the non-linear setting in Lemma 4.2.2, the result gives a lower bound not
only in the asymptotic case but also one for every choice of n and k. The proof of the GV
bound in the non-linear case gives a similar non-asymptotic bound in the linear setting also.

Note that we can also pick a random linear code by picking a random (n — k) X n parity
check matrix. This also leads to a alternate proof of the GV bound: see Exercise 4.2.

1

Finally, we note that Theorem 4.2.1 requires § < 1 — . An inspection of Gilbert and

Varshamov’s proofs shows that the only reason the proof required that § < 1 — % is because
it is needed for the volume bound (recall the bound in Proposition 3.3.3)- Vol,(én,n) <
qa@®n to hold. It is natural to wonder if the above is just an artifact of the proof or if
better codes exist. This leads to the following question:

Question 4.2.4. Does there exists a code with R >0 and 6 > 1 — %?

We will return to this question in Section 4.4.

4.3 Singleton Bound

We will now change gears again and prove an upper bound on R (for fixed ). We start by
proving the Singleton bound.

Theorem 4.3.1 (Singleton Bound). For every (n,k,d), code,
k<n-—d+1.

Consequently, if C' is an infinite family of codes of rate R and relative distance § then

R<1-6.

Note that the asymptotic bound hold for any family of codes, even those where the
alphabet may grow (arbitrarily) with the length of the code.

Proof. We start by proving the non-asymptotic bound first. The asymptotic version
follows easily and is shown at the end.

Let ¢y, ¢, ..., ¢y be the codewords of an (n, k,d), code C. Note that we need to show
M < ¢4+, To this end, we define ¢} to be the prefix of the codeword ¢; of length n —d + 1
for every i € [M]. See Figure 4.3 for a pictorial description.

We now claim that for every i # j, ¢; # cj. For the sake of contradiction, assume that
there exits an i # j such that ¢, = ¢j. Notice this implies that ¢; and ¢; agree in all the
first n — d + 1 positions, which in turn implies that A(c;,¢;) < d — 1. This contradicts the
fact that C' has distance d. Thus, M is the number of prefixes of codewords in C' of length
n —d + 1, which implies that M < ¢"~ %! as desired.
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Figure 4.3: Construction of a new code in the proof of the Singleton bound.

To get the asymptotic bound, assume some infinite family of codes C has rate R =
R(C) =1— 6§+ ¢ for some € > 0. Then there must exist an n > 2/¢ and a code C,, € C
that is an (n, k, d), code with k > n(1 —0 +¢) and d > dn. By our choice of n we thus have
k > n —d+ 2 contradicting the non-asymptotic bound proved above.

O

Figure 4.4 presents a pictorial description of the asymptotic version of the Singleton
bound. It is worth noting that the bound is independent of the alphabet size. As is evident
from Figure 4.4, the Singleton bound is worse than the Hamming bound for binary codes.
However, this bound is better for larger alphabet sizes. In fact, we will look at a family of
codes called Reed-Solomon codes in Chapter 5 that meets the Singleton bound. However,
the alphabet size of the Reed-Solomon codes increases with the block length n. Thus, a
natural follow-up question is the following:

Question 4.3.2. Given a fized ¢ > 2, does there exist a q-ary code that meets the Singleton
bound?

We'll see an answer to this question in the next section.

4.4 Plotkin Bound

In this section, we will study the Plotkin bound, which will answer Questions 4.2.4 and
4.3.2. We start by stating the bound.
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Figure 4.4: The Hamming, GV and Singleton bound for binary codes.

Theorem 4.4.1 (Plotkin bound). The following hold for any code C' C [q]™ with distance
at least d:
1. Ifd= (1 . l) n, |C| < 2qn.

q

2. Ifd > (1 - 3) n, |C) < i

Note that the Plotkin bound (Theorem 4.4.1) implies that a code with relative distance
0>1-— %, must necessarily have R = 0, which answers Question 4.2.4 in the negative.

Before proving Theorem 4.4.1, we make a few remarks. We first note that the upper
bound in the first part of Theorem 4.4.1 can be improved to 2(q — 1)n for ¢ > 2. (See
Exercise 4.13.) Second, it can be shown that this bound is tight for ¢ = 2. (See Exercise 4.14.)
Third, the statement of Theorem 4.4.1 gives a trade-off only for relative distance greater than
1 — 1/q. However, as the following corollary shows, the result can be extended to work for
0 <6 <1-1/q. (See Figure 4.5 for an illustration for binary codes.)

Corollary 4.4.2. Let C' be an infinite family of q-ary codes with relative distance 0 < § <
1— % and rate R. Then
R<1- (L> 5.
q—1

Proof. Assume for contradiction that C is an infinite family of ¢g-ary codes with rate
R=1- (ﬁ) 0 + ¢ for some ¢ > 0. Let C € C be a code of block length n > % - log (%)
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with distance d < dn and message length £k > Rn. We argue now that an appropriate
“shortening” of C' yields a code contradicting Theorem 4.4.1.
Partition the codewords of C' so that codewords within a partition agree on the first

n —n’ symbols, where n’ = quleJ — 1. (We will see later why this choice of n’ makes sense.)

In particular, for every x € [¢]*™™, define the ‘prefix code’

Cy ={(Chong1s---Cn) | (c1...en) €C (1 ... Cpp) = X}

In other words Cy consists of the n'-length suffixes of all codewords of C' that start with the
string x.)

By definition Cy is a g-ary code of block length n’ = L]q_—le — 1. We claim that it also has
distance at least d for every x: To see this, suppose for some x, ¢; # ¢y € Cyx, A(cy, ) < d.
But this yields two codewords of C, namely (x,c;) and (x,c2), a Hamming distance is less
than d from each other, contradicting the assumption that A(C) > d.

Since n’ < <q%1> d (by definition of n') and thus, d > <1 — %) n’. Applying Theo-

rem 4.4.1 to Cx we get that

qd
wd—(g— 1w < qd < qgn, (4.7)

where the second inequality follows from the fact that qd — (¢ — 1)n’ is a positive integer and
the third is immediate from d < n.
We now use the bound on |Ck| for all x to get a bound on |C'|. Note that by the definition

of Ck:
ICl= ) |G,

x€[g

|Cx| <

which by (4.7) implies that

logn q
IC| < E qn = qn_"/"'l"’loiq < qnfq%ldJrlHOgn < qn<176'qf1+6>

— Y

x€lgn—

where the first inequality uses the definition of n’ and the final inequality uses the fact that
n > % -log (%) We conclude that R <1 — (q%ﬂ) 0 + e. Since this holds for every € > 0 the
corollary follows. O

Note that Corollary 4.4.2 implies that for any g-ary code of rate R and relative distance
d (where ¢ is a constant independent of the block length of the code), R < 1 —¢. In other
words, this answers Question 4.3.2 in the negative.

Let us pause for a bit at this point and recollect the bounds on R versus § that we have
proved till now, which are all depicted in Figure 4.5 (for ¢ = 2). The GV bound is the best
known lower bound at the time of writing of this book. Better upper bounds are known and
we will see one such trade-off (called the Elias-Bassalygo bound) in Section ?7.
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Figure 4.5: The current bounds on the rate R vs. relative distance § for binary codes. The
GV bound is a lower bound on R while the other three bounds are upper bounds on R.

Now, we turn to the proof of Theorem 4.4.1, for which we will need two more lemmas. The
first lemma deals with vectors over real spaces. We quickly recap the necessary definitions.
Consider a vector v in R", that is, a tuple of n real numbers. This vector has (Euclidean)
norm ||v| = /v} + v + ... + 02, and is a unit vector if and only if its norm is 1. The inner
product of two vectors, u and v, is (u,v) = > . u; - v;. The following lemma gives a bound
on the number of vectors that can exist such that every pair is at an obtuse angle with each
other.

Lemma 4.4.3 (Geometric Lemma). Let vi,vy,...,v,, € RY be non-zero vectors.
1. If (v;,vj) <0 for all i # j, then m < 2N.
2. Let v; be unit vectors for 1 < i < m. Further, if (v;,v;) < —e <0 for all i # j, then
m<1421!

(Both items 1 and 2 are tight: see Exercises 4.15 and 4.16.) The proof of the Plotkin
bound will need the existence of a map from codewords to real vectors with certain properties,
which the next lemma guarantees.

Lemma 4.4.4 (Mapping Lemma). For every q and n, there ezists a function f : [¢]" — R™
such that for every cq,cq € [¢]" we have

(Fler), fle)) = 1 ( 1 ) (A“h"”) |

qg—1 n

!Note that since v; and v; are both unit vectors, (v;,v;) is the cosine of the angle between them.
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Consequently we get:

1. For every c € [q|", || f(c)]| = 1.

2. If A(ey,¢ca) > d then we have (f(c1), f(c2)) <1 — <qqu) (4).

n

We defer the proofs of the Geometric Lemma and the Mapping Lemma to the end of the
section and turn instead to proving Theorem 4.4.1 using the lemmas.

Proof of Theorem 4.4.1. Let C' = {cy,ca,...,¢y} be a g-ary code of block length n and
distance d. Let f : [¢]" — R™ be the function from Lemma 4.4.4. Then for all i we have
that f(c;) is a unit length vector in R™. Furthermore for all i # j, we have

q d
D fleny<i—(—2-)2
e ste) <1- (245) 4
Thus f(cy),..., f(cy) give us unit vectors in R™ to which we can apply Lemma 4.4.3 and

this will yield the upper bounds claimed on m = |C| in the theorem statement.
For part 1 of the theorem, if d = (1 — 5) n = @, then for all ¢ # j, we have

(f(ei), flcz)) <0.

So by the first part of Lemma 4.4.3, m < 2ngq, as desired.
For part 2, if d > (%) n then for all 7 # j we have

<f(ci),f(cj)>§1—< ‘ )d——<w).

qg—1 n_ (g—1)n

Let ¢ & (W—;f) > 0. We can apply the second part of Lemma 4.4.3 to f(cy),..., f(cm)

and € to get m < 1+ qd(_qall_)?)n = qd_(‘f]d_l)n, as desired. [

4.4.1 Proof of Geometric and Mapping Lemmas

We now prove Lemmas 4.4.3 and 4.4.4. We start with Lemma 4.4.3, namely the Geometric
Lemma.

Proof of Lemma 4.4.35. We prove both parts using linear algebra over the reals.

We start by proving the first part of the lemma. This part is also linear algebraic but
involves a few more steps.

We first focus on a subset of the m vectors that has a positive inner product with some
fixed vector u. Specifically we pick u to be a generic vector in R so that (u,v;) # 0 for
every ¢. Such vector exists since the set of vectors satisfying (u,v;) = 0 is a dimension N — 1
linear subpace of RY (since v; # 0). And the union of N such linear subspaces (one for each
i € [N]) cannot cover all of RY.
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Assume w.l.o.g. that at least half of the v;’s have a positive inner product with u (if not
we can work with —u instead) and assume further that these are the first £ > m/2 vectors by
renumbering the vectors. We now show that vy, ..., v, are linearly independent. This suffices
to prove the first part, since linear independence implies £ < N and thus m < 2¢ < 2N.

Assume for contradiction that there is a linear dependency among the vectors vy, ..., vy,
i.e., there exist ay,...,a, with at least one a; # 0 such that Ziem a;z; = 0. Note we can
assume that at least one «; is positive since if all are non-negative we can negate all a;’s to
get a positive a;. Further, by renumbering the indices we can assume that there exists k > 1
such that aq,...,ar > 0 and agy1,...,a0 < 0.

Let w = Zle a;v; By the definition of «;’s we have that w = — Zgzkﬂ a;v;. We first
argue that w # 0 by using the vector u. Note that we have

(u,w) = (u, Z avi) = ai{u,vi) > ag(u,vi) > 0.

i=1

We thus conclude w has a non-zero inner product with some vector and hence can not be
the zero vector.
But now we have the following contradiction:

k 14 k.t
0< <W, W> = <Z o; Vi, — Z OéjVj> = — Z Oél'Oéj<VZ',Vj> <0,
i=1

Jj=k+1 i=1,j=k+1

where the first inequality uses w # 0, the first equality uses the two definitions of w namely
w = Zle v, = — Zﬁ:k .1 a5V, and the final inequality holds for every term in the sum-
mation. Specifically for every 0 < ¢ < kand k+1 < j < ¢ we have a; > 0, a; < 0
and (v;,v;) < 0 and so —a;a;(v;,v;) < 0. We conclude that vy,...,v, must be linearly
independent and this proves the first part of the lemma.

We now move on to the proof of the second part. Define z = vy +...+v,,. Now consider

the following sequence of relationships:

|/1* = ZHVzH2 + 22<V¢,Vj> <m+2- (ﬂ;) (=) =m(l —em+e¢).

1<j

The inequality follows from the facts that each v; is a unit vector and the assumption that
for every i # j, (v;.v;) < —e. As ||z||* > 0,

m(l —em+¢) > 0.

Since m > 1, we have that
l—em+e2>0

or
em <1+e.

Thus, we have m < 1+ %, as desired.
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Alternate proof of first part. We now present an alternate proof of the first result,
which we do by induction on n. Note that in the base case of N = 0, we have m = 0, which
satisfies the claimed inequality m < 2N.
In the general case, we have m > 1 non-zero vectors vy, ..., v, € RY such that for every
i # 7,
(vi,vj) <0. (4.8)
Since rotating all the vectors by the same amount does not change the sign of the inner
product (nor does scaling any of the vectors), w.l.o.g. we can assume that v,, = (1,0,...,0).
For 1 <i < m —1, denote the vectors as v; = (;,y,), for some a; € R and y; € R¥™'. Now,
for any ¢ # 1, (vi,v;) =1-a;+ > ., 0 = a;. However, we know from (4.8) that (vy,v;) <0,
which in turn implies that o
a; < 0. (4.9)

Next, we claim that at most one of y,...,y,,_; can be the all zeroes vector, 0. If not,
assume w.l.o.g., that y; =y, = 0. This in turn implies that

(Vi,va) = a1 - ag + (¥4, ¥9)
=a;-az+0
= Q- Q9

> 0,

where the last inequality follows from the subsequent argument. As v; = {(aq,0) and vy =
(a2,0) are non-zero, we have that oy, ap # 0. (4.9) then implies that oy, ap < 0. However,
(v1,va) > 0 contradicts (4.8).

Thus, w.l.o.g., assume that y,,...,y,,_, are all non-zero vectors. Further, note that for
every i # j € [m — 2|, (y;,¥;) = (Vi,Vj) — a; - o < (v;,v;) < 0. Thus, we have reduced
problem on m vectors with dimension N to an equivalent problem on m — 2 vectors with
dimension N — 1. By induction we have m — 2 < 2(N — 1) and thus implying m < 2N.

O]

Finally, we prove the Mapping Lemma, i.e., Lemma 4.4.4.

Proof of Lemma 4.4.4. We begin by defining a map ¢ : [¢] — R? which essentially satisfies
the requirements of the lemma statement for the case n = 1 (up to some normalization
constant). Then, we essentially apply ¢ separately to each coordinates of a word to get the
map [ : [¢]* — R™ that satisfies the claimed properties. We now fill in the details.

Let e; denote the unit vector along the ith direction in R, i.e.,

ei=<0,0,..., 1 ,...,0>.
ithposition

Let € = %Zie[q] e, = (1/¢,1/q,...,1/q). Note that we have (e;,e;) = 1 if i = j and 0
otherwise. Note also (e, e;) = (e,€) = 1/q for every 1.
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Now we define ¢ : [q] — R? to be ¢(i) = e; — €. For every pair i, € [¢q] we have

(0(1), ¢(j)) = (ei — &, ¢; — &) = (ej,€;) — (e;,€) — (€,€;) + (€,€) = (ej,€;) — 1/q.
Thus, for every i € [q], we get:

16()? = (eses) — 1/g = - D (4.10)
Also for every i  j € [q], we have:
(0(0).6(7)) = —=. (4.11)
We are now ready to define our final map £ : [g]" — R™. For every ¢ = (c1, .. ., ¢x) € [g]",
define
Fl©) = | (der)s Blca). - Blen))

n(g—1)
(The multiplicative factor , /ﬁ will be used to ensure below that f(c) for every ¢ € [¢]"

is a unit vector.)
To complete the proof, we will show that f satisfies the claimed properties. We begin
with condition 1. Note that

IF@I = 5 2ol =1,

(¢g—1)n
where the first equality follows from the definition of f and the second equality follows from
(4.10).
We now turn to the second condition. For notational convenience, define ¢; = (x4, ..., x,)
and ¢o = (Y1,...,¥Yn). Consider the following sequence of relations:
(fler), flea)) = > {flae), £(ye))
=1
q
— | 3 o+ Y (o), ¢<yz>>] (5)
Lé:xo#ye L:xp=1y, n<q - )
= () Z () ()
=1 > (= )+ > (/)| (—= (4.12)
Le:xoF#ye q Cxo=yy q n(q B 1)
[ -1 qg—1 q
=|A — —A . 4.1
s (2) - ()] ()

=1-A(cy, ) (n(qq_ 1)) E + %]

() ()

as desired. In the above, (4.12) is obtained using (4.11) and (4.10) while (4.13) follows from

the definition of the Hamming distance. ]
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4.5 Exercises

Exercise 4.1. Given an infinite family of q-ary codes C' of relative distance , and € > 0
prove that there exists an ng such that for all n > ny, if C,, € C is an [n, k], code, then
k/n <1—H,/§/2)+¢€. Use this to conclude Proposition 4.1.1.

Exercise 4.2. Pick a (n—k)xn matrizc H over F at random. Show that with high probability
the code whose parity check matriz is H achieves the G'V bound.

Exercise 4.3. Recall the definition of an e-biased space from Ezercise 2.15. Show that there
exists an e-biased space of size O(k/e?).

Hint: Recall part 1 of Fxercise 2.15.

Exercise 4.4. Argue that a random linear code as well as its dual both lie on the corresponding
GV bound.

Exercise 4.5. In Section 4.2.2, we saw that random linear code meets the GV bound. It is
natural to ask the question for general random codes. (By a random (n,k), code, we mean
the following: for each of the ¢* messages, pick a random wvector from [q|". Further, the
choices for each codeword is independent.) We will do so in this problem.

1. Prove that a random q-ary code with rate R > 0 with high probability has relative
distance 6 > Hq_l(l — 2R — €). Note that this is worse than the bound for random
linear codes in Theorem 4.2.1.

2. Prove that with high probability the relative distance of a random q-ary code of rate
R is at most Hq_1(1 — 2R) 4+ €. In other words, general random codes are worse than
random linear codes in terms of their distance.

Hint: Use Chebyshev’s inequality (Lemma 3.1.8).

Exercise 4.6. We saw that Algorithm 4.2.1 can compute an (n, k), code on the GV bound
in time ¢°™. Now the construction for linear codes is a randomized construction and it
is natural to ask how quickly can we compute an [n, k|, code that meets the GV bound. In
this problem, we will see that this can also be done in ¢°™ deterministic time, though the
deterministic algorithm is not that straight-forward anymore.

1. Arque that Theorem 4.2.1 gives a ¢°*™ time algorithm that constructs an [n, k], code
on the GV bound. (Thus, the goal of this problem is to “shave” off a factor of k from
the exponent.)

2. Ak xn Toeplitz Matriz A = {Am}f:l” ;-‘:1 satisfies the property that A;; = A;_1,-1.
In other words, any diagonal has the same value. For example, the following is a 4 X 6
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Toeplitz matriz:

1 23 456
712 3 45
8 71 2 3 4
98 71 2 3

A random k x n Toeplitz matriz T € ]FI(;X" is chosen by picking the entries in the first
row and column uniformly (and independently) at random.

Prove the following claim: For any non-zero m € IF];, the vector m - T is uniformly
distributed over T, that is for everyy € Fy, Prjm-T =y| = ¢ ".

Hint: Write down the expression for the value at each of the n positions in the vector m - T in terms
of the values in the first row and column of T'. Think of the values in the first row and column as
variables. Then divide these variables into two sets (this “division” will depend on m) say S and S.
Then argue the following: for every fized y € F; and for every fized assignment to variables in S,
there is a unique assignment to variables in S such that mT = y.

3. Briefly argue why the claim in part 2 implies that a random code defined by picking
its generator matriz as a random Toeplitz matrix with high probability lies on the GV
bound.

4. Conclude that an [n, k], code on the GV bound can be constructed in time ¢@*+m).

Exercise 4.7. Show that one can construct the parity check matriz of an [n, k], code that
lies on the GV bound in time q°™.

Exercise 4.8. So far in Ezercises 4.6 and 4.7, we have seen two constructions of [n, k],
code on the GV bound that can be constructed in ¢°™ time. For constant rate codes, at the
time of writing of this book, this is fastest known construction of any code that meets the GV
bound. For k = o(n), there is a better construction known, which we explore in this exercise.

We begin with some notation. For the rest of the exercise we will target a distance of
d = on. Given a message m € IF]; and an [n, k|, code C, define the indicator variable:

1 ifwt(Cm)) <d
Wu(C) = { 0 otherwise.

Further, define
DIC)= > Wa(0).
meFk\ {0}

We will also use D(G) and Wi (G) to denote the variables above for the code C' generated by
G.

Given an k x n matriz M, we will use M' to denote the ith column of M and M=
to denote the column submatriz of M that contains the first i columns. Finally below we
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will use G to denote a uniformly random k X n generator matrix and G to denote a specific
instantiation of the generator matriz. We will arrive at the final construction in a sequence
of steps. In what follows define k < (1 — H,(0))n for large enough n.

1. Argue that C' has a distance d if and only if D(C') < 1.
2. Argue that E[D(G)] < 1.
3. Argue that for any 1 < i <n and fized k x n matriz G,

minE [D(G)|g=' = G=',¢"! = v] <E [D(G)|G=' = G='].

VG]FI(;

4. We are now ready to define the algorithm to compute the final generator matriz G: see
Algorithm /.5.1. Prove that Algorithm 4.5.1 outputs a matriz G such that the linear
code generated by G is an [n,k,dn|, code. Conclude that this code lies on the GV
bound.

5. Finally, we will analyze the run time of Algorithm 4.5.1. Argue that Step 2 can be
implemented in poly (n,qk) time. Conclude Algorithm 4.5.1 can be implemented in
time poly (n, qk).

Hint: It might be useful to maintain a data structure that keeps track of one number for every non-zero

m € Fé throughout the run of Algorithm 4.5.1.

Algorithm 4.5.1 ¢°®) time algorithm to compute a code on the GV bound

INPUT: Integer parameters 1 < k # n such that k < (1 — H,(6)n)

OuTPUT: An k X n generator matrix G for a code with distance on
1: Initialize G to be the all Os matrix > This initialization is arbitrary
2: FOR every 1 <7 <n DO
3: G+ arg min,cpr [D(G)|G=" = G=,G"T =]

4: RETURN G

Exercise 4.9. In this problem we will derive the GV bound using a graph-theoretic proof,
which is actually equivalent to the greedy proof we saw in Section 4.2.1. Let 1 < d <n and
q > 1 be integers. Now consider the graph G a4 = (V. E), where the vertex set is the set of
all vectors in [q|". Given two vertices u # v € [q]", we have the edge (u,v) € E if and only if
A(u,v) < d. Anindependent set of a graph G = (V, E) is a subset I C 'V such that for every
u#v € I, we have that (u,v) is not an edge. We now consider the following sub-problems:

1. Argue that any independent set C' of Gy a4 s a q-ary code of distance d.
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2. The degree of a vertex in a graph G s the number of edges incident on that vertex.
Let A be the mazimum degree of any vertex in G = (V, E).Then arque that G has an
v

independent set of size at least ATi-

3. Using parts 1 and 2 argue the GV bound.

Exercise 4.10. In this problem we will improve slightly on the GV bound using a more
sophisticated graph-theoretic proof. Let G, 44 and N and A be as in the previous exercise
(Ezercise 4.9). So far we used the fact that G, 4, has many vertices and small degree to
prove it has a large independent set, and thus to prove there is a large code of minimum
distance d. In this exercise we will see how a better result can be obtained by counting the
number of “triangles” in the graph. A triangle in a graph G = (V, E) is a set {u,v,w} CV
of three vertices such that all three vertices are adjancent, i.e., (u,v), (v,w), (w,u) € E. For
simplicity we will focus on the case where ¢ = 2 and d = n/5, and consider the limit as
n — o0.

1. Prove that a graph on N wvertices of mazimum degree A has at most O(NA?) triangles.
2. Prove that the number of triangle in graph G, 42 is at most
n
2" . - 3°.
> ()
0<e<3d/2

Hint: Fiz u and let e count the number of coordinates where at least one of v or w disagree
with u. Prove that e is at most 3d/2.

. Simplify the expression in the case where d = n/5 to show that the number of triangles in
Grnys2 18 O(N - A*77) for some 1 > 0.

. A famous result in the “probabilistic method” shows (and you don’t have to prove this), that
if a graph on N wvertices of mazimum degree A has at most O(N - A*™) triangles, then it
has an independent set of size Q(% log A). Use this result to conclude that there is a binary
code of block length n and distance n/5 of size Q(n2"/(n75)) (Note that this improves over

the GV-bound by an Q(n) factor.)
Exercise 4.11. Use part 1 from Exercise 1.7 to prove the Singleton bound.

Exercise 4.12. Let C' be an (n,k,d), code. Then prove that fizing any n —d + 1 positions
uniquely determines the corresponding codeword.

Exercise 4.13. Qur goal in this problem is to improve the bound in part 1 in Theorem 4.4.1.
Towards that end,

1. Prove that the following holds for every k > 1. There exists k + 1 vectors vF € R* for
i € [k+ 1] such that (1) vaH; =1 for every i € [k+1] and (2) (vF,v¥) = —1 for
every i # j € [k +1].
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2. Using the above part, or otherwise, prove the following result. Let C' be a q code of
block length n and distance (1 - %) n. Then |C| < 2(q — 1)n. (Note that this is a
factor q/(q — 1) better than part 1 in Theorem 4.4.1.)

Exercise 4.14. Prove that the bound in Exercise 4.13 is tight for ¢ = 2— i.e. there exists
binary codes C with block length n and distance n/2 such that |C| = 2n.

Exercise 4.15. Prove that part 1 of Lemma 4.4.5 is tight.
Exercise 4.16. Prove that part 2 of Lemma 4.4.5 is tight.

Exercise 4.17. In this exercise we will prove the Plotkin bound (at least part 2 of Theo-
rem 4.4.1) via a purely combinatorial proof.

Given an (n,k,d), code C with d > (1 — %) n define

S = Z A(Cl,C2>.

c1#c2eC

For the rest of the problem think of C' has an |C| X n matriz where each row corresponds to
a codeword in C'. Now consider the following:

1. Looking at the contribution of each column in the matrix above, argue that

S < (1 - 1) n|C.
q

2. Look at the contribution of the rows in the matriz above, arque that

S>|C|I(C|-1)-d.

3. Conclude part 2 of Theorem 4.4.1.

Exercise 4.18. In this exercise, we will prove the so called Griesmer Bound. For any
[n, k,d),, prove that

-l

>[5

Hint: Recall Ezercise 2.18.
Exercise 4.19. Use Exercise 4.18 to prove part 2 of Theorem 4.4.1 for linear codes.

Exercise 4.20. Use Fxercise /.18 to prove Theorem 4.5.1 for linear codes.

88



4.6 Bibliographic Notes

Theorem 4.2.1 was proved for general codes by Gilbert ([16]) and for linear codes by Var-
shamov ([42]). Hence, the bound is called the Gilbert-Varshamov bound. The Singleton
bound (Theorem 4.3.1) is due to Singleton [38], though versions of this result with the same
simple proof seem to have appeared earlier in the work of Joshi [25] who only states the
bound for the case ¢ = 2. For larger (but still constant) values of ¢, better lower bounds
than the GV bound (i.e., results on the existence of codes) are known. In particular, for
every prime power g > 49, there exist linear codes, called algebraic geometric (or AG) codes
that outperform the corresponding GV bound®. AG codes are out of the scope of this book.
An introduction to this class of codes can be found, for instance, in a survey by Hholdt, van
Lint, and Pellikaan [23]. Exercise 4.10 is from the work of Jiang and Vardy [24].

2AG codes are only defined for g being a square or a prime and achieve a rate R > 1 —§ — \/6171' The

lower bound of 49 comes from the fact that it is the smallest square of a prime for which this bound improves
on the g-ary GV bound.
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Chapter 5

The Greatest Code of Them All:
Reed-Solomon Codes

Reed-Solomon codes have been studied a lot in coding theory, and are ubiquitous in practice.
These codes are basic and based only very elementary algebra. Yet they are optimal in the
sense that they exactly meet the Singleton bound (Theorem 4.3.1). For every choice of n
and k satisfying k& < n there is a Reed-Solomon code of dimension k, block length n and
distance n — k 4+ 1. As if this were not enough, Reed-Solomon codes turn out to be more
versatile: they are fully explicit and they have many applications outside of coding theory.
(We will see some applications later in the book.)

These codes are defined in terms of univariate polynomials (i.e. polynomials in one
unknown /variable) with coefficients from a finite field IF,. It turns out that polynomials over
[F,, for prime p, also help us describe finite fields F,s, for s > 1. We start with a quick review
of polynomials over finite fields (for a more careful review, please see Appendix ?7). This
will allow us to define Reed-Solomon codes over every field F,, which we do in the second
part of this chapter. Finally in the third part of this chapter we discuss “Maximum Distance
Separable” (MDS) codes, which are codes that meet the Singleton bound. We discuss their
properties (which in turn are also properties of the Reed-Solomon codes, since they are MDS
codes).

5.1 Polynomials and Finite Fields

We start by reviewing the notion of a (univariate) polynomial over a field and define basic
notions such as degree, evaluation and root of a polynomial. We conclude with the “degree
mantra” that relates the degree to the number of roots.

We begin with the formal definition of a (univariate) polynomial.

Definition 5.1.1. A polynomial over a variable X and a finite field F, is given by a finite
sequence (fo, f1,..., fa) with f; € F, and is denoted by F(X) = E?:o fiXt. The degree of
F(X), denoted deg(F'), is the largest index i such that f; # 0.
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For example, 2X? + X2 4+ 5X + 6 is a polynomial over F; of degree 3. We ignore leading
zeroes in the definition of a polynomial. For example 0X* + 2X3 + X2 45X + 6 is the same
polynomial as 2X3 4+ X2 +5X + 6.

Next, we define some useful notions related to polynomials. We begin with the notion of
degree of a polynomial.

We let F,[X] denote the set of polynomials over F,, that is, with coefficients from F,.
Let F(X),G(X) € F,[X] be polynomials. Then F,[X] has the following natural operations
defined on it:

Addition:
max(deg(F'),deg(G))

FX)+G(X) = (fi +9:)X",

=0
where the addition on the coefficients is done over F,. For example, over [Fy,
X+(1+X)=X-(1+1)+1-(0+1)=1
(recall that over Fy, 1 +1=0)."
Multiplication:
deg(F)+deg(G) [ min(i,deg(F))
F(X) - G(X) = Z Z fi-gi-5 | X7,

i=0 §=0

where all the operations on the coefficients are over F,. For example, over Fy, X (1 +
X)=X+X% (14+X)2=1+2X + X? =1+ X? where the latter equality follows
since 2 = 0 mod 2.

Next, we define evaluations of a polynomial.

Definition 5.1.2. Given a polynomial F(X) € F,[X] and o € F,, the evaluation of F(X)
at a, denoted F(a) is 308" faf. Note that F(a) € F,.2

Finally, polynomials don’t have multiplicative inverses, but one can divide polynomials
by each other and get quotients and residues. The following proposition defines this notion
and states some basic properties.

IThis will be a good time to remember that operations over a finite field are much different from
operations over integers/reals. For example, over reals/integers X + (X +1) = 2X + 1.

2While this definition requires the coefficients of F' and « to come from the same field, it also extends
naturally to the case where one of these is from a field Fg extending IFF,. Since F, C Fg, if o € F; and
F(X) € Fg[X] then the evaluation is well-defined since a € Fg. If F(X) € F,[X] then we use the fact that
F,[X] C Fg[X] to get a definition of F(«). In both cases F(«) € Fg.
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Proposition 5.1.3 (Polynomial Division). Given polynomial f(X), g(X) € F,[X] there exist
unique polynomials q(X), the quotient, and r(X), the remainder, with deg(r) < deg(g) such
that f(X) = ¢(X)g(X) +r(X). If g(X) = X —a for a € F,, then r(X) is the degree 0
polynomial f(«), i.e., the evaluation of f at .

Definition 5.1.4. a € F, is a root of a polynomial F(X) if F(a) = 0.

For instance, 1 is a root of 1 4+ X? over Fs.

We now state a basic property of polynomials, the “Degree Mantra”, that will be crucial
to our use of polynomials to build error-correcting codes. We also introduce the notion of
irreducible polynomials whose existence is closely related to the existence of finite fields of
prime power size. Finally, motivated by the need to make fields and field operations fully
constructive, we briefly remark on the construction of irreducible polynomials.

Proposition 5.1.5 (“Degree Mantra”). A nonzero polynomial f(X) of degree t over a field
F, has at most t distinct roots in F,.

Proof. We will prove the theorem by induction on t. If ¢t = 0, we are done. Now, consider
f(X) of degree t > 0. If f has no roots then we are done, else let o € IF, be a root of f. Let
g(X) = X — a. By the fundamental rule of division of polynomials (Proposition 5.1.3) we
have that f(X) = (X — a)q(X) + f(a) = (X — a)q(X). It follows that the degree of ¢(X)
satisfies deg(f) = 1+ deg(q), and thus deg(q) =t — 1. Note further that if 8 # « is a root
of f then we have that q(a) = f(8) - (8 — a)~! and so 3 is also a root of ¢. By induction
we have that ¢ has at most ¢t — 1 roots, and this f has at most ¢ distinct roots (the at most
t — 1 roots of ¢ plus the root at «).

]

The codes we will construct in this chapter do not need any more algebra, except to
describe the finite fields that they work over. To understand finite fields beyond those of
prime size, we now describe some more basic properties of polynomials.

5.1.1 Irreducibility and Field Extensions

We will start with a special class of polynomials, called irreducible polynomials, which are
analogous to how prime numbers are special for natural numbers.

Definition 5.1.6. A polynomial F(X) is irreducible if for every G1(X),Ga(X) such that
F(X) = G1(X)Ga(X), we have min(deg(Gy),deg(G2)) = 0

For example, 1 4+ X? is not irreducible over Fs, as
1+X)(1+X)=1+X>

However, 1 4+ X + X2 is irreducible, since its non-trivial factors have to be from the linear
terms X or X + 1. However, it can be checked that neither is a factor of 1 + X + X?. (In
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fact, one can show that 1+ X + X? is the only irreducible polynomial of degree 2 over Fy—
see Exercise 5.4.) A word of caution: if a polynomial F(X) € F,[X] has no root in FF,, it
does not mean that F(X) is irreducible. For example consider the polynomial (1+ X + X?)?
over [Fo— it does not have any root in Fy but it obviously is not irreducible.

The main reason we consider irreducibility of polynomials in this book is that irreducible
polynomials lead us to non-prime fields. Just as the set of integers modulo a prime is a
field, so is the set of polynomials modulo an irreducible polynomial, and these fields can
have non-prime size. We start by first asserting that they form a field; and then turn to
properties such as size later.

Theorem 5.1.7. Let E(X) be an irreducible polynomial of degree s > 2 over F,, p prime.
Then the set of polynomials in F,[X]| modulo E(X), denoted by F,[X]/E(X), is a field.

The proof of the theorem above is similar to the proof of Lemma 2.1.4, so we only sketch
the proof here. In particular, we will explicitly state the basic tenets of F,[X|/E(X).

 Elements are polynomials in F,[X] of degree at most s —1. Note that there are p* such
polynomials.

o Addition: (F(X)+ G(X)) mod F(X) = F(X) mod E(X) + G(X) mod E(X) =
F(X)+ G(X). (Since F(X) and G(X) are of degree at most s — 1, addition modulo
E(X) is just plain polynomial addition.)

« Multiplication: (F(X)-G(X)) mod E(X) is the unique polynomial R(X) with de-
gree at most s — 1 such that for some A(X), R(X)+ A(X)E(X) = F(X) - G(X)

o The additive identity is the zero polynomial, and the additive inverse of any element
F(X)is —F(X).

o The multiplicative identity is the constant polynomial 1. It can be shown that for
every element F(X), there exists a unique multiplicative inverse (F(X))™!.

For example, for p =2 and F(X) =1+ X + X?, Fo[X]/(1+ X + X?) has as its elements
0,1, X,1+ X}

The additive inverse of any element in Fo[X]/(1 + X + X?) is the element itself while the
multiplicative inverses of
1,Xand 1+ X

in Fo[X]/(1+ X + X?) are
1,1+ X and X

respectively.
Next we turn to the size of the field F,[z]/E(X) for an irreducible polynomial E.
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Lemma 5.1.8. Let E(x) € Fy[z] be an irreducible polynomial of degree s. Then F,[z]/E(z)
is a field of size ¢°.

Proof. This follows from the fact that the elements of F,[z|/E(x) are in one to one
correspondence with set of remainders of all polynomials in F [X] when divided by E(X)
which in turn is simply the set of all polynomials of degree less than s. The number of such
polynomials equals ¢ (there are ¢ possibilities for the coefficient of X’ for every 0 < i <
s). O

Thus a natural question to ask is if an irreducible polynomials exist for every degree.
Indeed, they do. The following theorem asserts this and the reader may find a proof in
Appendix ?7?.

Theorem 5.1.9. For all s > 2 and I, there exists an irreducible polynomial of degree s

over IF,,. In fact, the number of such monic irreducible polynomials is © (p_
s

The result is true even for general finite fields F, and not just prime fields but we stated
the version over prime fields for simplicity.

Now recall that Theorem 2.1.5 states that for every prime power p®, there is a unique
field Fps. This along with Theorems 5.1.7, Lemma 5.1.8 and 5.1.9 imply that:

Corollary 5.1.10. The field F . is F,[X]/E(X), where E(X) is an irreducible polynomial
of degree s.

The facts about irreducible polynomials listed above give sufficient information not only
to determine when finite fields exist, but also how to represent them so as to be able to add,
multiply or invert elements, given an irreducible polynomial of degree s over IF,. To make
our ability to work with fields completely algorithmic we need one more ingredient — one
that allows us to find an irreducible polynomial of degree s in F, fast. We now turn to this
question.

5.1.2 Finding Irreducible Polynomials

Given any monic * polynomial E(X) of degree s, it can be verified whether it is an irreducible
polynomial by checking if the following two conditions hold (where ged(F(X), G(X)) is the
greatest common denominator (or factor) of polynomials F'(X) and G(X)):

e ged(E(X), X7 — X) = E(X), and

« For every t ¢ {1,s} that divides s, we have ged(E(X), X% — X) =1

3Le. the coefficient of the highest degree term is 1. It can be checked that if E(X) = e, X®+e, 1 X571+
.-+ 41 is irreducible, then e;! - E(X) is also an irreducible polynomial.
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This is true as every irreducible polynomial in F,[X] of degree exactly s divides the polyno-
mial X% —X (see Proposition ??). Since Euclid’s algorithm for computing the ged(F(X), G(X))
can be implemented in time polynomial in the minimum of deg(F') and deg(G) and logq
(see Section ?7), this implies that checking whether a given polynomial of degree s over
[F,[X] is irreducible can be done in time poly(s, log ¢). It turns out we can improve upon the
complexity of checking whether a given polynomial is irreducible slightly (see Exercise 5.5).

We now turn to the question of finding an irreducible polynomial, given ¢ and s. A brute
force algorithm can simply enumerate all monic polynomials of degree s over F, and test
each one for irreducibility. This takes poly(¢®) time. To get a more efficient algorithm we
use randomness and Theorem 5.1.9, while will give us a Las Vegas algorithm* to generate an
irreducible polynomial of degree s over F,. We give the code below, but note that the idea
of the algorithm is to keep on generating random polynomials until it comes across an irre-
ducible polynomial (Theorem 5.1.9 implies that the algorithm will check O (p°®) polynomials
in expectation). Algorithm 5.1.1 presents the formal algorithm.

Algorithm 5.1.1 Generating Irreducible Polynomial
INPUT: Prime power ¢ and an integer s > 1
OuTPUT: A monic irreducible polynomial of degree s over IF,
1: b+ 0
2: WHILE b = (0 DO
3: F(X)«+ X*+ Zf;é fiX", where each f; is chosen uniformly at random from F,,.

4 1F ged(F(X), X7 — X) = F(X) THEN
5 b+« 1.

6 FOR all t ¢ {1, s} that divides s DO

7: 1F ged(F(X), X% — X) # 1) THEN
8: b <+ 0.

9: RETURN F(X)

The above discussion implies the following:

Corollary 5.1.11. There is a Las Vegas algorithm to generate an irreducible polynomial of
degree s over any I, in expected time poly(s,logq).

The above implies that we can ‘construct’ a finite field F, in in randomized poly(logq)
time. (See Exercise 5.6 for more including details on what it means to ‘construct’ a finite
field.)

This concludes our discussion of polynomials, polynomial arithmetic and properties of
polynomials. We now turn to using them to building codes.

4A Las Vegas algorithm is a randomized algorithm which always succeeds and we consider its time
complexity to be its expected worst-case run time.

96



5.2 Reed-Solomon Codes

Recall that the Singleton bound (Theorem 4.3.1) states that for every (n,k,d), code, k <
n —d+ 1. Next, we will study Reed-Solomon codes, which meet the Singleton bound (i.e.
satisfy K = n — d + 1) but have the unfortunate property that ¢ > n. Note that this implies
that the Singleton bound is tight, at least for ¢ > n.

We begin with the definition of Reed-Solomon codes.

Definition 5.2.1 (Reed-Solomon code). Let F, be a finite field, and choose n and k satisfying
k<n<gq. Fiz a sequence o = (ay, g, ...aep,) of n distinct elements (also called evaluation
points) from F,. We define an encoding function for Reed-Solomon code RS,[cx, k] : Fl; — Ty

as follows. Map a message m = (mg,mq,...,my_1) with m; € F, to the degree k — 1
polynomial.
m — fi(X),
where
k—1
ful(X) = mX". (5.1)
i=0

Note that fi(X) € F,[X] is a polynomial of degree at most k — 1. The encoding of m is the
evaluation of fu(X) at all the o;’s :

qu[av k](m) = (fm(al)v fm(aQ)’ ) fm(an)) :

When q,a and k are known from context, we suppress them in the notation and simply
refer to the map as RS. We call the image of this map, i.e., the set {RS[m|lm € ]F];}, the

Reed-Solomon code or RS code. A common special case isn = q—1 with the set of evaluation
« def

points being F* = F \ {0}.

For example, the first row below are all the codewords in the [3, 2]3 Reed-Solomon codes
where the evaluation points are [F3 (and the codewords are ordered by the corresponding mes-
sages from Fg in lexicographic order where for clarity the second row shows the polynomial
fm(X) for the corresponding m € F3 in gray):

(0,00, (1,1,1), (2,22), (0,1,2), (1,20), (2,0,1), (021), (1,02), (2,1,0)
0, 1, 2, X, X+1, X+2, 2X, 2X+1, 2X+2

Notice that by definition, the entries in {ay,...,a,} are distinct and thus, must have
n <gq.

In what follows we will describe the basic properties of Reed-Solomon codes. In principle
we should refer to the codes as RS,[er, k] since all the parameters are needed to specify the

code. However for notation simplicity we will assume k,n, ¢, and a4, ..., o, € F, are fixed
and satisfy k& < n < ¢ allowing us to refer to the resulting code as simply RS. (Thus all
results below hold for every such choice of k,n,q and oy, ..., ay.)

Claim 5.2.2. RS codes are linear codes.

97



Proof. The proof follows from the fact that if « € F, and f(X),¢(X) € F,[X] are
polynomials of degree < k — 1, then af(X) and f(X)+ g(X) are also polynomials of degree
< k — 1. In particular, let messages m; and my be mapped to fi, (X) and fi,(X) where
Jiny (X)), fm, (X) € F,[X] are polynomials of degree at most k£ — 1 and because of the mapping
defined in (5.1), it can be verified that:

fm1(X) + fmz(X) = fm1+m2(X),

and
afml (X> = f(lml (X)'

In other words,

aRS(m;) = RS(am,).
Therefore RS is a [n, k], linear code. O

The second and more interesting claim is the following:

Claim 5.2.3. The minimum distance of RS isn — k + 1.

The claim on the distance follows from Proposition 5.1.5 which asserted that every non-
zero polynomial of degree k — 1 over F,[X] has at most k£ — 1 roots. The proof below uses
this to prove a lower bound on the distance. The upper bound follows from the Singleton
Bound (Theorem 4.3.1). Details below.

Proof of Claim 5.2.3. Fix arbitrary m; # m, € Fr. Note that fu, (X), fum,(X) € F [X]
are distinct polynomials of degree at most k—1 since m; # my € IF’;. Then fu, (X)— fm, (X) #
0 also has degree at most k — 1. Note that wt(RS(my) — RS(m;)) = A(RS(m;), RS(my)).
The weight of RS(m3) —RS(m;) is n minus the number of zeroes in RS(my) —RS(m; ), which
is equal to n minus the number of roots that fm, (X) — fm,(X) has among {ay, ..., a,}. That
is,

A(RS(my), RS(mz)) = n — {e | fum (i) = fmy (i)}

By Proposition 5.1.5, fu, (X)— fm, (X) has at most k—1 roots. Thus, the weight of RS(mjy)—
RS(my,) is at least n—(k—1) = n—k+1. Therefore d > n—k+1, and since the Singleton bound
(Theorem 4.3.1) implies that d < n—k+1, we have d = n—k+1.> The argument above also
shows that distinct polynomials fu, (X), fm,(X) € F,[X] are mapped to distinct codewords.
(This is because the Hamming distance between any two codewords is at least n —k+1 > 1,
where the last inequality follows as & < n.) Therefore, the code contains ¢* codewords and
has dimension k. The claim on linearity of the code follows from Claim 5.2.2. [

5See Exercise 5.2 for an alternate direct argument.
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We thus have an exact understanding of the dimension and distance of the Reed-Solomon
codes, which we summarize in the theorem below. The theorem also notes that the param-
eters match those of the Singleton Bound. Recall that the Plotkin bound (Corollary 4.4.2)
implies that to achieve the Singleton bound, the alphabet size cannot be a constant. Thus,
some growth of ¢ with n is unavoidable to match the Singleton bound, and the Reed-Solomon
codes match it with ¢ > n.

Theorem 5.2.4. RS is a [n,k,n — k + 1], code. That is, RS codes match the Singleton
bound.

Finally, we describe a generator matrix for RS codes. Such a matrix is guaranteed
to exist by Claim 5.2.2, but now we give an explicit one. By Definition 5.2.1, any basis
Junys - fm,, Of polynomial of degree at most k& — 1 gives rise to a basis RS(my), ..., RS(my) of
the code. A particularly nice polynomial basis is the set of monomials 1, X, ..., X, ..., X*~1,
The corresponding generator matrix, whose ith row (numbering rows from 0 to k — 1) is

(af, o, s,y

and this generator matrix is called the Vandermonde matrix of size k x n:

1 1 1 1 1 1

al a2 ... aj ... an
2 2 2 2
al a2 ... a] DY an
o] o aj a;,
k=1 k-1 k—1 k—1
ay aly Q; a,

The class of codes that match the Singleton bound have their own name, which we define
and study next.

5.3 Maximum Distance Separable Codes and Proper-
ties

Definition 5.3.1 (MDS codes). An (n,k,d), code is called Maximum Distance Separable

(MDS) if d=n—k+ 1.

Thus, Reed-Solomon codes are MDS codes.
Next, we prove an interesting property of an MDS code C' C ¥" with integral dimension
k. We begin with the following notation.

Definition 5.3.2. For every subset of indices S C [n] of size exactly k and a code C C 3",
Cys is the set of all codewords in C projected onto the indices in S.
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MDS codes have the following nice property that we shall prove for the special case of
Reed-Solomon codes first and subsequently for the general case as well.

Proposition 5.3.3. Let C C X" of integral dimension k be an MDS code, then for all
S C [n] such that |S| = k, we have |Cs| = XF.

Before proving Proposition 5.3.3 in its full generality, we present its proof for the special
case of Reed-Solomon codes.

Consider any S C [n] of size k and fix an arbitrary v = (vy,...,v;) € IF’;, we need to show
that there exists a codeword ¢ € RS (assume that the RS code evaluates polynomials of
degree at most k— 1 over oy, ...,a, C F,) such that c¢g = v. Consider a generic degree k — 1

polynomial F(X) = Zf:_ol fiX%. Thus, we need to show that there exists F/(X) such that
F(a;) =v; for all i € S, where |S| = k.

For notational simplicity, assume that S = [k]. We think of f;’s as unknowns in the equations
that arise out of the relations F'(«;) = v;. Thus, we need to show that there is a solution to
the following system of linear equations:

1 1 1 U1
aq Q; 73 V2
2 2 2
« o o _ v
(po p1 - Pro1) 1 i k = 3

o fo% oy, Vg

The above constraint matrix is a Vandermonde matrix and is known to have full rank (see
Exercise 5.3). Hence, by Exercise 2.7, there always exists a unique solution for (p, ..., pr-1).
This completes the proof for Reed-Solomon codes.

Next, we prove the property for the general case which is presented below

Proof of Proposition 5.3.3. Consider a |C| x n matrix where each row represents a
codeword in C. Hence, there are |C| = |%|¥ rows in the matrix. The number of columns
is equal to the block length n of the code. Since C' is Maximum Distance Separable, its
distance d =n — k + 1.

Let S C [n] be of size exactly k. It can be verified that for every ¢! # ¢/ € C, the
corresponding projections ¢k and Cg € Cy are not the same. As otherwise A(c?,¢/) < d —1,
which is not possible as the minimum distance of the code C'is d. Therefore, every codeword
in C' gets mapped to a distinct codeword in Cg. As a result, |Cs| = |C] = |X|*. As Cs C ¥,
this implies that C'y = 3*, as desired. |

Proposition 5.3.3 implies an important property in pseudorandomness: see Exercise 5.14
for more.
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5.4 Exercises

Exercise 5.1. Prove that every function f: F, — F, is equivalent to a polynomial P(X) €
F,[X] of degree at most ¢ — 1: that is, for every a € I,

Furthermore, prove the choice of this polynomial P is unique.

Exercise 5.2. For every [n, k], Reed-Solomon code, i.e., for every RS,[a, k| for every choice
of k <n<gqand a = (ay,...,qp), exhibit two codewords that are at Hamming distance
exactly n — k + 1.

Exercise 5.3. Let ay,...,q; be distinct elements in a field F. Consider the k x k Van-
dermonde matriz Vo, ..., ap) whose (i,7)th entry is ol " fori,j € {1,2,...,k}. Prove
that V(aq, ..., ax) has full rank. Use this property to prove that a Reed-Solomon code of
dimension k can efficiently correct n — k erasures.

Exercise 5.4. Prove that X+ X + 1 is the unique irreducible polynomial of degree two over
Fs.

Exercise 5.5. Let s > 1 be an integer and let r be the number of prime divisors of s and
let T(s) be the number of divisors of s. In this problem we will consider the number of ged
operations we need to decide whether a given polynomial of degree s is irreducible or not.

1. Prove that T(s)—1 calls to ged are enough to decide if a degree s polynomial is irredicible
or not.
Hint: This is what is used in Algorithm 5.1.1.

2. Let py,...,p. be the prime divisors of s. Then prove that a degree s polynomial E(X)
is irreducible iff

e gcd(E(X), X7 — X) = E(X), and
o For every i € [r], we have ged (E(X),Xqﬂ — X) =1

3. Using the above part or otherwise arque that r + 1 calls to ged are enough to decide
if a degree s polynomial is irredicible or not. Further, arque that this is exponentially
fewer calls than the result in the first part.

Hint: Prove and then use the fact that 7(s) > 27.

Exercise 5.6. In this problem we will consider what it means to ‘construct’ a finite field.
For simplicity, assume that ¢ = p° for some s > 1. A representation of a finite field F, is a
triple (S, 0, f) where S C {0,1}" with |S| = p® is set of representations of elements on F,,
6 is some ‘auxiliary’ representation and a bijection f : F, — S. For every o € Fps, f(a)
is the representation Also implicit in this definition is given o, 3 € F, how one computes
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fla)+ f(B), —f(a), f(a)- f(B). Further, one needs to identify the additive and multiplicative
identities in S. Finaly, given a non-zero element o € Fs, compute f(a)~'. The auziliary
representation 6 can be used to implement these operations.

We call a representation efficient of all of the operations can be supported in poly(log q)
time. In this problem we will explore the problem of constructing an efficient representation
of a finite field in poly(logq) (randomized) time.

1. Let E(X) be an irreducible polynomial of degree s. Given E(X), prove that the repreen-
tation Fy[X]/E(X) (i.e. § = E(X) and for everyu € F;.° f(u) = fu(X) as per (5.1)
and the additive and multiplicative identities are the 0 and 1 polynomials) is an efficient
representation.

Hint: The following fact might be useful: for every o € F, al=?2 =qa7 1,
2. Using the above part or otherwise prove that for every prime p and integer s > 1, an
efficient representation of Fps can be computed in (randomized) poly(slogp) time.

Exercise 5.7. In Exercise 2.17, we saw that any linear code can be converted in to a
systematic code. In other words, there is a map to convert Reed-Solomon codes into a
systematic one. In this exercise the goal is to come up with an explicit encoding function
that results in a systematic Reed-Solomon code.

In particular, given the set of evaluation points aq,...,«,, design an explicit map f
from F'; to a polynomial of degree at most k — 1 such that the following holds. For every
message m € F];, if the corresponding polynomial is fu(X), then the vector (fm(c%))cp, has
the message m appear in the corresponding codeword (say in its first k positions). Further,
prove that this map results in an [n, k,n — k + 1], code.

Exercise 5.8. Let a C [F{ be a vector enumerating all the elements of the field F,. Prove
that

(RS,[cx, k)" = (RS,[ax, ¢ — k]).

that is, the dual of these Reed-Solomon code are Reed-Solomon codes themselves. Conclude
that the class of Reed-Solomon codes contain self-dual code (see Exercise 2.33 for a definition).

Exercise 5.9. We have defined Reed-Solomon codes as evaluation codes. They are sometimes
also defined in an alternate way, as coefficients of polynomials with pre-specified roots, and
this exercise will demonstrate the equivalence of the two ways.

Let ¥, be a field, and ¥, be the multiplicative group of its nonzero elements. Letn = q—1
and let a be a generator of]FZ so that the vector o = (1, v, ...,a" 1) has all distinct elements
and o = 1. Consider the Reed-Solomon code over a field F, with evaluation points being c:

RS,[a, k] = {(p(1), p(a),...,p(a™ 1)) | p(X) € F[X] has degree < k —1}.

®Note that there is a bijection between F: to [F) and hence we can define f on I instead of ..
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Prove that

RS,[a, k] = {(co,c1,---,cn1) €EF"|C(a)=0for1<i<n-—k,
where C(X) =co+e1 X + -+ +c, 1 X"} (5.2)

Hint: Ezercise 2.8 might be useful.

Exercise 5.10 (Generalized Reed-Solomon Codes).

For a field F with |F| > n, an n-tuple a = (a1, aa, ..., a,) of n distinct elements of IF,
and a vector v.= (v1,va,...,v,) € (F*)" of n (not necessarily distinct) nonzero elements
from F, the Generalized Reed-Solomon code GRSr|ey, k, v| is defined as follows:

GRSp[a, k, v] = {(vi-p(a1),va-plag), ..., vn-p(an)) | p(X) € F[X] has degree < k} . (5.3)
(In particular, note that RS,[a, k] = GRS, [, k, (1,...,1)].)
1. Prove that GRSglex, k, v] is an [n,k,n — k + 1]r linear code.
2. Prove that the dual code of GRSylex, k, v] is
GRSr[a, k, v]© = GRSp[at,n — k, u]
foru= (uy,uz,...,u,) € (F)" where fori =1,2,...,n,
1
Vi Hj;éi(ai —aj)

U; =

Hint: First show that it suffices to prove that for every polynomial p of degree < k and every polynomial
q of degree < n—k, it is the case that Zjll wivip(;)q(ay) = 0. Next, express an arbitrary polynomial
h of degree < n in terms of the Lagrange polynomials L; that satisfy Li(a;) = 1 if i = j and 0

otherwise. Apply to the polynomial h = p - q and use the fact that the coefficient of 2™~ in h is zero.

3. Prove that the dual of RS|e, k], when o enumerates all elements of ¥, is the variant
of a Reed-Solomon code that maps a message polynomial m(X) with degree < n—k to
evaluations of X - m(X) on a.

4. Derive Ezercise 5.8 as a corollary of Part 2.

Exercise 5.11. In this problem we will look at a very important class of codes called BCH
codes’.

Fix an integer m and let ¢ = 2™ and n = q — 1. Let non-zero elements of the field
Fom be {n1,...,nn} and let o« = (ny,...,n,). Given non-negative integer k < n, the binary
BCH code, denoted Cgcy = Cpcu(m, k), is defined as RSom[ax, k] NFy. In other words Cgcn
consists of those codewords in the Reed-Solomon code RSam|ex, k| all of whose coordinates lie
in the subfield Fy C Fom.

"The acronym BCH stands for Bose-Chaudhuri-Hocquenghem, the discoverers of this family of codes.
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1. Let d =n — k+ 1. Prove that Cgcy is a binary linear code of distance at least d and
dimension at least n — (d — 1)logy(n + 1).

Hint:  Use the characterization (5.2) of the Reed-Solomon code from Ezercise 5.9.
2. Prove a better lower bound of n — [%W log,(n + 1) on the dimension of Cpcn.

Hint: There are redundant checks among the parity checks (5.2) defining Cscu, using the fact that

the coefficients are in Fs.
3. For d = 3, Cgcu is the same as another code we have seen. What is that code?

4. Define the subcode of Czcy with a global parity check, i.e., the condition c; +co+ - - -+
cn =0 (overFy). Let d be an even integer. Show how to use the BCH code with a global

parity check to construct a binary linear code of distance at least d and dimension at
least n — (d/2 — 1)logy(n + 1) — 1.

5. Conclude that for all n of the form 2™ —1 and integers d, 2 < d < n/log,(n1), one can

construct an [n, k', d']y binary linear code with d' > d and k' > n— L%J log,(n+1)—1.

2
Hint: What does the Hamming bound say?

6. Prove that the LHJ factor cannot be any smaller.

Exercise 5.12. In this exercise, we will consider BCH-like codes in the theme of Fxer-
cise 5.11, but applied to the GRS codes of Exercise 5.10. Consider the Generalized Reed-
Solomon code Cars = GRSrlav, k, V] defined in (5.3) of dimension k and block length n over
a field F = Fym. Now, define its binary intersection code C* := Cgrs NFy, which will be the
object of study in this exercise.

1. Prove that C* is a code of distance at least d :=n —k + 1.

2. Prove that C* is a binary linear code of rate at least 1 — W

Hint: How many parity checks are needed to define this code?

3. Let ¢ € Fy be a nonzero binary vector. Prove that for every choice of the evaluation
points sequence o there are at most (2™ —1)* choices of the vector v for which ¢ € Cgrs.

4. Using the above, prove that if the integer D satisfies Vola(n, D — 1) < (2™ — 1)"*
(where Voly(n, D — 1) = Zigl (")), then there exists a vector v € (F*)" such that the
minimum distance of the binary code C* is at least D.

5. Using parts 2 and 4 above, prove that the family of codes GRSp|ex, k,v] N5 contains
binary linear codes that meet the Gilbert-Varshamouv bound.
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Exercise 5.13. Recall the definition of Hadamard codes from Section 2.6: the [2",r,2" 1],
Hadamard code is generated by the r X 2" matriz whose ith (for 0 < i < 2" — 1) column is
the binary representation of i. This exercise gives a polynomial view of Hadamard codes.

Specifically, prove that the Hadamard codeword for the message (my, ms, ..., m,) € {0,1}"
is the evaluation of the (multivariate) polynomial mi Xy + moXs + -+ + m, X, (where
X1, ..., X, are the r variables) over all the possible assignments to the variables (X1, ..., X,)
from {0,1}".

Using the definition of Hadamard codes above (re)prove the fact that the code has distance
2r—t,

Exercise 5.14. Recall the definition of t-wise independence from Ezercise 2.14, namely, a
set S C Iy is said to be a t-wise independent source (for some 1 <t < n) if for every I C [n]
with |I| = t, a uniformly random sample (X1,...,X,) from S satisfies the property that the
variables {X;|i € I} are uniform and independent over F,. (Note that such a sample can
be obtained using log, |S| random bits.) We will explore properties of these objects in this
exercise.

1. Let C be a linear code that does not have any coordinate that is 0 for every codeword.
Prove that C' is a 1-wise independent source.

2. Prove that every [n, k], MDS code is a k-wise independent source but is not a k+ 1-wise
independent source.

3. Using Part 2 or otherwise, prove that there exists a k-wise independent source S C F*
of size at most ¢~ for ¢ > m. Now show how to pick q so that S can be viewed as
a k-wise independent source in IFZ”"M of size at most (2m)*. Finally set m and q
as functions of n and k to show that k - (logyn — log, log, n + O(1))-random bits are

enough to sample from a k-wise independent source over Fy.

4. For 0 < p < 1/2, we say the n binary random variables Xy,..., X, are p-biased and
t-wise independent if any of the t random variables are independent and Pr [ X; = 1] = p
for every i € [n|. For the rest of the problem, let p be a power of 1/2. Then show
that any t - log,(1/p)-wise independent random variables can be converted into t-wise
independent p-biased random variables. Conclude that one can construct such sources
with tlog,(1/p)(1+41og, (nlogy(1/p))) uniformly random bits. Then improve this bound
to t(1 + max(log,(1/p),log, n)) uniformly random bits.

Exercise 5.15. In this exercise, we improve over the randomness used in Part 3 of Ex-
ercise 5.14 to sample from a k-wise independent source over Fy, by nearly a factor of 2.
Specifically, use Exercises 2.14 and 5.11 part 5 to prove the following: for every integers n, k
with 1 < k < n, at most |£]log,(2n)) random bits are enough to compute n-bits that are
k-wise independent.

Exercise 5.16. In many applications, errors occur in “bursts”—i.e., all the error locations
are contained in a contiguous region (think of a scratch on a DVD or disk). In this problem
we will use how one can use Reed-Solomon codes to correct bursty errors.
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An error vector e € {0,1}" is called a t-single burst error pattern if all the non-zero bits
in e occur in the range [i,i+t — 1] for some 1 <i <n =t+1. Further, a vectore € {0,1}"
is called a (s,t)-burst error pattern if it is the union of at most s t-single burst error pattern
(i.e. all non-zero bits in e are contained in one of at most s contiguous ranges in [n]).

We call a binary code C' C {0,1}" to be (s,t)-burst error correcting if one can uniquely
decode from any (s,t)-burst error pattern. More precisely, given an (s,t)-burst error pattern
e and any codeword ¢ € C, the only codeword ¢’ € C' such that (¢ +e) — ¢ is an (s,t)-burst
error pattern satisfies ¢ = c.

1. Prove that if C is (st)-error correcting (in the sense of Definition 1.3.5), then it is
also (s,t)-burst error correcting. Conclude that for every € > 0, there exists code with
rate Q(?) and block length n that is (s, t)-burst error correcting for every s, t such that
st < (}1—5) “n.

2. Prove that for every rate R > 0 and for large enough n, there exist (s,t)-burst error
correcting as long as s-t < (1’—12%’5) ‘nandt > (1"%) In particular, one can correct
from % — ¢ fraction of burst-errors (as long as each burst is “long enough”) with rate
Q(e) (compare this with item 1).

Hint: Use Reed-Solomon codes.

Exercise 5.17. In this problem, we will consider the number-theoretic counterpart of Reed-
Solomon codes. Let 1 < k < n be integers and let p; < ps < --- < p, be n distinct primes.
Denote K = Hle p; and N = [[\_, pi. The notation Zy; stands for integers modulo M,
i.e., the set {0,1,..., M —1}. Consider the Chinese Remainder code defined by the encoding
map E : L — Ly, X Ly, X -+ X Ly, defined by:

E(m)=(m modp;, m modps, ---, m mod p,) .

(Note that this is not a code in the usual sense we have been studying since the symbols at
different positions belong to different alphabets. Still notions such as distance of this code
make sense and are studied in the question below.)

Suppose that my # mo. For 1 <i < n, define the indicator variable b; = 1 if E(my); #
E(my); and b; = 0 otherwise. Prove that [[I_, p%* > N/K.

Use the above to deduce that when my # ms, the encodings E(my) and E(msy) differ in
at least n — k + 1 locations.

Exercise 5.18. In this problem, we will consider derivatives over a finite field F,. Unlike
the case of derivatives over reals, derivatives over finite fields do not have any physical
interpretation but as we shall see shortly, the notion of derivatives over finite fields is still a
useful concept. In particular, given a polynomial f(X) = Z::O ;X" over F,, we define its

derivative as
t—1

f(X)= Z(l +1) - fin - X
i=0
Further, we will denote by f(i)(X), the result of applying the derivative on f i times. In this
problem, we record some useful facts about derivatives.
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1. Define R(X,Z) = f(X + Z) =3t_yri(X) - Z. Then for every j > 1,

FOX) = gt ry(X).

2. Using part 1 or otherwise, show that for every j > char(]Fq),i fO(X) =0.

3. Let j < char(F,). Further, assume that for every 0 < i < j, f@(a) = 0 for some
a € F,. Then prove that (X — «)’ divides f(X).

4. Finally, prove the following generalization of the degree mantra (Proposition 5.1.5).
Let f(X) be a non-zero polynomial of degree t and m < char(FF,). Then there exists at
most L J distinct elements o € F, such that f(j)(a) =0 for every 0 < 7 < m.

t
m

Exercise 5.19. In this exercise, we will consider a code that is related to Reed-Solomon
codes and uses derivatives from Exercise 5.18. These codes are called derivative codes.

Let m > 1 be an integer parameter and consider parameters k < char(F,) and n such
that m < k < nm. Then the derivative code with parameters (n,k,m) is defined as follow.
Consider any message m € ]F’; and let fm(X) be the message polynomial as defined for the

Reed-Solomon code. Let ay, ..., o, € F, be distinct elements. Then the codeword for m is
given by
Jm (1) fm(az) - fm(an)
fallan)  fwlae) oo fa(an)
far ) fa P (az) - S (o)

1. Prove that the above code is linear over F,, meaning that if ci,co € (IF;”)” are codewords,
then so is acy + Bey for all o, 8 € Fy. Here we define av for a € Fy and v € F" as
multiplication of coordinates of v by «, and as usual acy is componentwise multiplication
of symbols of c; by .

2. Prove that the above code has rate k/(nm) and distance at least n — [E2].

Exercise 5.20. In this exercise, we will consider another code related to Reed-Solomon
codes that are called Folded Reed-Solomon codes. We will see a lot more of these codes in
Chapter ?7?.

Let m > 1 be an integer parameter and let oy, ..., o, € Fy are distinct elements such
that for some element v € IF,, the sets

{Oéi, a;7, 042'72, - aaﬂm_l}7 (5-4)

8char(F,) denotes the characteristic of F,. That is, if ¢ = p® for some prime p, then char(F,) = p. Any
natural number ¢ in F, is equivalent to ¢ mod char(F,).
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are pair-wise disjoint for differenti € [n]. Then the folded Reed-Solomon code with parameters
(m,k,n,y,a1,...,a,) is defined as follows. Consider any message m € IE‘]; and let fm(X) be
the message polynomial as defined for the Reed-Solomon code. Then the codeword for m is
given by:

fm(al) fm(aZ) fm(an)
fm<a1 : ’7) fm(a2 : 7) T fm(an : ’7)
fmlor - 4™ fulaz ™) o fulon ™)

Prove that the above code has rate k/(nm) and distance at least n — L%J

Exercise 5.21. In this problem we will see that Reed-Solomon codes, derivative codes (Ex-
ercise 5.19) and folded Reed-Solomon codes (Exercise 5.20) are all essentially special cases
of a large family of codes that are based on polynomials. We begin with the definition of these
codes.

Let m > 1 be an integer parameter and define m < k < n. Further, let E1(X), ..., E,(X)
be n polynomials over F,, each of degree m. Further, these polynomials pair-wise do not have
any non-trivial factors (i.e. ged(E;(X), E;(X)) has degree 0 for every i # j € [n].) Consider
any message m € IE"; and let fi(X) be the message polynomial as defined for the Reed-
Solomon code. Then the codeword for m is given by:

(fm(X) mod Ey(X), fm(X) mod Ey(X),..., fm(X) mod E,(X)).

In the above we think of fu(X) mod E;(X) as an element of Fym. In particular, given given
a polynomial of degree at most m — 1, we will consider any bijection between the q™ such
polynomials and Fym. We will first see that this code is MDS and then we will see why it
contains Reed-Solomon and related codes as special cases.

1. Prove that the above code has rate k/(nm) and distance at least n — | ==1].

2. Let ay, ..., € F, be distinct elements. Define E;(X) = X — ;. Prove that for this
special case the above code (with m = 1) is the Reed-Solomon code.

3. Let oy, ..., € F, be distinct elements. Define E;(X) = (X — «;)™. Prove that for
this special case the above code is the derivative code (with an appropriate mapping

from polynomials of degree at most m—1 and F;*, where the mapping could be different
for each i € [n] and can depend on E;(X)).

4. Let oy, ..., a €Fy be distinct elements and v € F, such that (5.4) is satisfied. Define

Ei(X) = H;n;ol (X —a;-~7). Prove that for this special case the above code is the folded
Reed-Solomon code (with an appropriate mapping from polynomials of degree at most

m — 1 and F7', where the mapping could be different for each i € [n] and can depend
on E;(X)).
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Exercise 5.22. In this exercise we will develop a sufficient condition to determine the
irreducibility of certain polynomials called the Eisenstein’s criterion.

Let F(X,Y) be a polynomial of F,. Think of this polynomial as over X with coefficients
as polynomials in Y over F,. Technically, we think of the coefficients as coming from the
ring of polynomials in'Y over F,. We will denote the ring of polynomials in Y over F, as
F,(Y) and we will denote the polynomials in X with coefficients from Fy(Y) as F,(Y)[X].

In particular, let

FX,Y)=X"+ fia(Y)- X7 - 4 fo(Y),

where each f;(Y) € F,(Y). Let P(Y) be a prime for F,(Y) (i.e. P(Y) has degree at least
one and if P(Y) divides A(Y) - B(Y') then P(Y') divides at least one of A(Y') or B(Y)). If
the following conditions hold:

(i) P(Y) divides f;(Y) for every 0 < i <t; but
(i) P*(Y) does not divide fo(Y)

then F(X,Y) does not have any non-trivial factors over Fy(Y)[X] (i.e. all factors have
either degree t or 0 in X ).
In the rest of the problem, we will prove this result in a sequence of steps:

1. For the sake of contradiction assume that F(X,Y) = G(X,Y)- H(X,Y) where
t1 to
GX.Y)=) g(V) X" and HX,Y)=> h(Y)- X,
=0 1=0

where 0 < ty,ty < t. Then prove that P(Y") does not divide both of go(Y) and ho(Y').
For the rest of the problem WLOG assume that P(Y') divides go(Y') (and hence does
not divide ho(Y")).

2. Prove that there exists an i* such that P(Y') divide g;(Y') for every 0 < i < i* but P(Y")
does not divide g;+(Y) (define g,(Y) =1).

3. Prove that P(Y) does not divide f;(Y). Conclude that F(X,Y) does not have any
non-trivial factors, as desired.

Exercise 5.23. We have mentioned objects called algebraic-geometric (AG) codes, that gen-
eralize Reed-Solomon codes and have some amazing properties: see for example, Section 4.6.
The objective of this exercise is to construct one such AG code, and establish its rate vs
distance trade-off.

Let p be a prime and q¢ = p*. Consider the equation
YP4+Y = xrH (5.5)

over F,.
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1. Prove that there are exactly p* solutions in F, x Fy to (5.5). That is, if S C Fg is
defined as o

S={(a,p) eFg| "+ 8 =ar""}
then |S| = p.

2. Prove that the polynomial F(X,Y) =YP? +Y — XP*! s irreducible over F,.
Hint: Erxercise 5.22 could be useful.

3. Let n = p3. Consider the evaluation map ev : F [X,Y] — Iy defined by

ev(f) = (f(e, B) : (o, B) € 5) .

Prove that if f # 0 and is not divisible by YP +Y — XPT1 then ev(f) has Hamming
weight at least n — deg(f)(p+ 1), where deg(f) denotes the total degree of f.
Hint:  You are allowed to make use of Bézout’s theorem, which states that if f,g € Fq[X,Y] are

nonzero polynomials with no common factors, then they have at most deg(f)deg(g) common zeroes.

4. For an integer parameter £ > 1, consider the set F; of bivariate polynomials

Fo=A{f € F[X,Y] [ deg(f) < ¢, degx(f) < p}
where degy(f) denotes the degree of f in X.
Prove that Fy is an F,-linear space of dimension ({+1)(p+1) — @.

5. Consider the code C CF} forn = p? defined by

C=Aev(f) | f € Fe} .
Prove that C' is a linear code with minimum distance at least n — {(p + 1).

6. Deduce a construction of an [n, k], code with distance d >n—k+1—p(p—1)/2.

(Note that Reed-Solomon codes have d = n — k + 1, whereas these codes are off by
p(p—1)/2 from the Singleton bound. However they are much longer than Reed-Solomon
codes, with a block length of n = ¢*?, and the deficiency from the Singleton bound is

only o(n).)

Exercise 5.24. Since Reed-Solomon codes are linear codes, by Proposition 2.5.5, one can
do error detection for Reed-Solomon codes in quadratic time. In this problem, we will see
that one can design even more efficient error detection algorithm for Reed-Solomon codes. In
particular, we will consider data streaming algorithms (see Section ?? for more motivation
on this class of algorithms). A data stream algorithm makes a sequential pass on the input
taking only poly-logarithmic time on each location in the input and uses only poly-logarithmic
space. In this problem we show that there exists a randomized data stream algorithm to solve
the error detection problem for Reed-Solomon codes. We do so by first defining a problem
unrelated to Reed-Solomon codes that can be solved by a data stream algorithm. (The solution
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will actually use Reed-Solomon codes, but this use is accidental and unrelated to the goal of
the second part.) In the second part of the problem we will solve the error-detection problem
for Reed-Solomon codes in the data-streaming setting using the solution to the first part as a
black-box.

1. For a sequence o = ((i1, ), ..., (in, ) € (Im] x Fy)" definey = y(o) € F;' to be
the vector given by vy, = Z{je[n]ﬁjze} aj for £ € Im]. Give a randomized data stream
algorithm that given as input a sequence o = ((i1, 1), ..., (in, ) € ([m] X F)™ that
outputs 0 if and only if y = y(o) = 0, with probability at least 2/3. Your algorithm
should take at most polylog(q(m + n)) time per position of input o and use at most
O(log g(m + n)) space. For simplicity, you can assume that given an integert > 1 and
prime power q, the algorithm has oracle access to an irreducible polynomial of degree t
over IF,.

Hint: Instead of computing and storing the vectory, you should compute E(y);, i.e., the jth coordinate
of an appropriate error-correcting encoding function E : Ffl — Fé where j € [L] is chosen uniformly
at random. To ensure this coordinate of the encoding function can be computed quickly, you may use

a Reed-Solomon code.

2. Given [q, k|, Reed-Solomon code C' (i.e. with the evaluation points being IF,), present
a data stream algorithm for error detection of C with O(logq) space and polylogq time
per position of the received word. The algorithm should work correctly with probability
at least 2/3. You should assume that the data stream algorithm has access to the values
of k and q (and knows that C has F, as its evaluation points).

Hint: Part 1 and Ezercise 5.8 should be helpful.

5.5 Bibliographic Notes

Reed-Solomon codes were invented by Reed and Solomon [34] in the form described in Defini-
tion 5.2.1, i.e., as evaluations of polynomials. Later, Gorenstein and Zierler [18] showed that
for specific choices of a, the resulting Reed-Solomon code is actually a “BCH code”. (This
is the connection explored in Exercise 5.9.) BCH codes were themselves discovered slightly
earlier in the independent works of Bose and Ray-Chaudhuri [5] and Hocquenghem [22]. We
note that the original definitions of BCH codes used the coefficients of polynomials to repre-
sent codewords (analogous to the alternate definition of Reed-Solomon codes in Exercise 5.9).
The equivalent definition of these codes used in Exercise 5.11 as subcodes of Reed-Solomon
codes, again uses the above mentioned connection from [18].

The Chinese Remainder Codes in Exercise 5.17 are due to Mandelbaum [30]. The Deriva-
tive Codes in Exercise 5.19 are due to Rosenbloom and Tsfasman [36]. They form an im-
portant subclass of Multiplicity Codes invented by Kopparty, Saraf and Yekhanin [26]. The
Folded Reed-Solomon codes in Exercise 5.20 were introduced by Krachovsky [27] and high-
lighted by the work of Guruswami and Rudra [20]. Exercise 5.21 is based on the work of
Guruswami and Kopparty [19].
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Appendix A

Some Useful Facts

A.1 Some Useful Inequalities

Recall that the binomial coefficient for integers a < b, defined as

(o) =703

We begin with a simple lower bound on the binomial coefficient:

Lemma A.1.1. For all integers 1 < a < b, we have
()= ()
> (-] .
a a
Proof. The following sequence of relations completes the proof:
(b> SSTbh—i b (b)
=[I—=1l-=(-) -
a Loa—i T g a

In the above, the first equality follows from definition and the inequality is true since b > a
and ¢ > 0. [

We state the next set of inequalities without proof (see [35] for a proof):

Lemma A.1.2 (Stirling’s Approximation). For every integer n > 1, we have

2mn <E> MM <l < V21 <E> er2(m)
e

e

where . .
and Aa(n) = T’




We prove another inequality involving Binomial coefficient.

Lemma A.1.3. For all integers 1 < a < b, we have
()= (%)
< (=) .
a a

<b> b1 (b—at1) _ b

a

Proof. First note that

al al

The final bound follows from the fact that

a a
al > (—) ,
e

which in turns follows from the following relationships:

We next state Bernoulli’s inequality:
Lemma A.1.4 (Bernoulli’s Inequality). For every real numbers k > 1 and x > —1, we have

(1+2)f > 1+ k.

Proof Sketch. We only present the proof for integer k. For the full proof see e.g. [6].

For the base case of k = 1, the inequality holds trivially. Assume that the inequality
holds for some integer £ > 1 and to complete the proof, we will prove it for £k + 1. Now
consider the following inequalities:

(1+2)* =1 +2)- (1+2)"
> (1+x) - (1+ k)
=1+ (k+ 1)z + ka?
> 1+ (k+ 1)z,

as desired. In the above, the first inequality follows from the inductive hypothesis and the
second inequality follows from the fact that k£ > 1. O

Lemma A.1.5. For |X| <1,
2

\/1+x§1+§—f—6.
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Proof. Squaring the RHS we get

1+x 22\ 2 1+x2+x4+ 2 a3 m +3:B2 SB3+SB4>1+
S ) = A —— T+ — -4 x
2 16 4 256 16 32 16 32 256 — ’

as desired. OJ

We will also use the Cauchy-Schwarz inequality:

Lemma A.1.6. For any vector x,y € R", we have

(%, 2] < [x][2 - [2]]2-

A.2 Some Useful Identities and Bounds

We start off with an equivalence between two inequalities.

Lemma A.2.1. Let a,b,c,d > 0. Then § < & if and only if 5 < 5.

Proof. Note that § < ¢ if and only if

(V4
Q.I&

Q|

The above is true if and only if

b
— 1>

> —+1,
a

ol

O

D a .
which is same as s < a

Next, we state some infinite sums that are identical to certain logarithms (the proofs are
standard and are omitted).

Lemma A.2.2. For |z| <1,

2 a3

1n(1+x):x—§+§—---.

We can use the above to prove some bounds on In(1 + z) (we omit the proof):
Lemma A.2.3. For 0 <z <1, we have
r—2%/2 <In(1+1x) <z,
and for 0 <z < 1/2, we have

—z—2*<In(l —z) < —x.
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We can use the above bounds to further prove boounds on the (binary) entropy function:

Lemma A.2.4. For x < 1/4, we have

1-522<H(1/2—2)<1-—2"

Proof. By definition H(1/2 — z) = 1 — 1/2log(1 — 42?) + xlog(1 — 2z)/(1 + 2z), and
y g g

using the approximations for In(1 + x) from Lemma A.2.3, we have, for = < 1/4,

1
— - (=22%) — R (227 — 22%)

In the above, (A.1) follows by using our assumption that z < 1/4.
Using the other sides of the approximations we also have:

1 1 1
H1/2—2)>14+ —— - (42?) + — - (=222 — 42%) — — - (222
(1/2=2) 214 g5 - (%) + - (2207 = da%) = o - (207)
312
>1- 2
- In2
21—5952,

where the second inequality uses our assumption that z < 1/4.

The following fact follows from the well-known fact that lim, .. (1+ 1/x)* =e:

Lemma A.2.5. For every real x > 0,
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