
Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-

ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY

and by Madhu Sudan at MIT.

This version is dated May 1, 2013. For the latest version, please go to

http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under

CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-

pressed in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2013.

This work is licensed under the Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444

Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 12

Efficiently Achieving the Capacity of the

BSCp

Table 12.1 summarizes the main results we have seen so far for (binary codes).

Shannon Hamming
Unique Decoding List Decoding

Capacity 1−H(p) (Thm 6.3.1) ≥ GV (Thm 4.2.1) 1−H(p) (Thm 7.4.1)
≤ MRRW (Sec 8.2)

Explicit Codes ? Zyablov bound (Thm 9.2.1) ?
Efficient Algorithms ? 1

2 · Zyablov bound (Thm 11.3.3) ?

Table 12.1: An overview of the results seen so far

In this chapter, we will tackle the open questions in the first column of Table 12.1. Recall
that there exist linear codes of rate 1−H(p)−ε such that decoding error probability is not more
than 2−δn , δ=Θ(ε2) on the BSCp (Theorem 6.3.1 and Exercise 6.5.1). This led to Question 6.3.1,
which asks if we can achieve the BSCp capacity with explicit codes and efficient decoding algo-
rithms?

12.1 Achieving capacity of BSCp

We will answer Question 6.3.1 in the affirmative by using concatenated codes. The main intu-
ition in using concatenated codes is the following. As in the case of construction of codes on
the Zyablov bound, we will pick the inner code to have the property that we are after: i.e. a
code that achieves the BSCp capacity. (We will again exploit the fact that since the block length
of the inner code is small, we can construct such a code in a brute-force manner.) However,
unlike the case of the Zyablov bound construction, we do not know of an explicit code that is
optimal over say the qSCp channel. The main observation here is that the fact that the BSCp

149

noise is memory-less can be exploited to pick the outer code that can correct from some small
but constant fraction of worst-case errors.

Before delving into the details, we present the main ideas. We will use an outer code Cout that
has rate close to 1 and can correct from some fixed constant (say γ) fraction of worst-case errors.
We pick an inner code Cin that achieves the BSCp capacity with parameters as guaranteed by
Theorem 6.3.1. Since the outer code has rate almost 1, the concatenated code can be made
to have the required rate (since the final rate is the product of the rates of Cout and Cin). For
decoding, we use the natural decoding algorithm for concatenated codes from Algorithm 7.
Assume that each of the inner decoders has a decoding error probability of (about) γ. Then the
intermediate received word y′ has an expected γ fraction of errors (with respect to the outer
codeword of the transmitted message), though we might not have control over where the errors
occur. However, we picked Cout so that it can correct up to γ fraction of worst-case errors. This
shows that everything works in expectation. To make everything work with high probability (i.e.
achieve exponentially small overall decoding error probability), we make use of the fact that
since the noise in BSCp is independent, the decoding error probabilities of each of the inner
decodings is independent and thus, by the Chernoff bound (Theorem 3.1.6), with all but an
exponentially small probability y′ has Θ(γ) fraction of errors, which we correct with the worst-
case error decoder for Cout. See Figure 12.1 for an illustration of the main ideas. Next, we present
the details.

Can correct ≤ γ worst-case errors

m1 m2 mK

Dout

Din Din Din

y ′
1

y1

y ′
2

y2

y ′
N

yN

y′

y

Independent decoding error probability of ≤ γ
2

Figure 12.1: Efficiently achieving capacity of BSCp .

We answer Question 6.3.1 in the affirmative by using a concatenated code Cout◦Cin with the
following properties (where γ > 0 is a parameter that depends only on ε and will be fixed later
on):

(i) Cout: The outer code is a linear [N ,K]2k code with rate R ≥ 1− ε
2 , where k = O(log N).

Further, the outer code has a unique decoding algorithm Dout that can correct at most γ
fraction of worst-case errors in time Tout(N).

(ii) Cin: The inner code is a linear binary [n,k]2 code with a rate of r ≥ 1−H(p)−ε/2. Further,

150

there is a decoding algorithm Din (which returns the transmitted codeword) that runs in
time Tin(k) and has decoding error probability no more than γ

2 over BSCp .

Table 12.2 summarizes the different parameters of Cout and Cin.

Dimension Block q Rate Decoder Decoding Decoding
length time guarantee

Cout K N 2k 1− ε
2 Dout Tout(N) ≤ γ fraction of

worst-case errors
Cin k ≤O(log N) n 2 1−H(p)− ε

2 Din Tin(k) ≤ γ
2 decoding error

probability over BSCp

Table 12.2: Summary of properties of Cout and Cin

Suppose C∗ =Cout ◦Cin. Then, it is easy to check that

R(C∗) = R · r ≥
(

1−
ε

2

)

·
(

1−H(p)−
ε

2

)

≥ 1−H(p)−ε,

as desired.
For the rest of the chapter, we will assume that p is an absolute constant. Note that this

implies that k =Θ(n) and thus, we will use k and n interchangeably in our asymptotic bounds.
Finally, we will use N = nN to denote the block length of C∗.

The decoding algorithm for C∗ that we will use is Algorithm 7, which for concreteness we
reproduce as Algorithm 11.

Algorithm 11 Decoder for efficiently achieving BSCp capacity

INPUT: Received word y =
(

y1, · · · , yN

)

∈
[

qn
]N

OUTPUT: Message m′ ∈
[

qk
]K

1: y′ ←
(

y ′
1, · · · , y ′

N

)

∈
[

qk
]N

where

Cin
(

y ′
i

)

= Din
(

yi

)

1 ≤ i ≤ N .

2: m′ ← Dout
(

y′)

3: RETURN m′

Note that encoding C∗ takes time

O(N 2k2)+O(N kn) ≤O(N 2n2) =O(N 2),

as both the outer and inner codes are linear1. Further, the decoding by Algorithm 11 takes time

N ·Tin(k)+Tout(N) ≤ poly(N),

1Note that encoding the outer code takes O(N 2) operations over Fqk . The term O(N 2k2) then follows from the

fact that each operation over Fqk can be implemented with O(k2) operations over Fq .

151

where the inequality is true as long as

Tout(N) = NO(1) and Tin(k) = 2O(k). (12.1)

Next, we will show that decoding via Algorithm 11 leads to an exponentially small decoding
error probability over BSCp . Further, we will use constructions that we have already seen in this
book to instantiate Cout and Cin with the required properties.

12.2 Decoding Error Probability

We begin by analyzing Algorithm 11.
By the properties of Din, for any fixed i , there is an error at y ′

i with probability ≤ γ
2 . Each

such error is independent, since errors in BSCp itself are independent by definition. Because of

this, and by linearity of expectation, the expected number of errors in y′ is ≤ γN
2 .

Taken together, those two facts allow us to conclude that, by the (multiplicative) Chernoff
bound (Theorem 3.1.6), the probability that the total number of errors will be more than γN

is at most e− γN
6 . Since the decoder Dout fails only when there are more than γN errors, this is

also the final decoding error probability. Expressed in asymptotic terms, the error probability is

2−Ω(γN

n).

12.3 The Inner Code

We find Cin with the required properties by an exhaustive search among linear codes of di-
mension k with block length n that achieve the BSCp capacity by Shannon’s theorem (Theo-
rem 6.3.1). Recall that for such codes with rate 1− H(p)− ε

2 , the MLD has a decoding error

probability of 2−Θ(ε2n) (Exercise 6.5.1). Thus, if k is at least Ω
(

log(1
γ)

ε2

)

, Exercise 6.5.1 implies the

existence of a linear code with decoding error probability at most γ
2 (which is what we need).

Thus, with the restriction on k from the outer code, we have the following restriction on k:

Ω

(
log(1

γ)

ε2

)

≤ k ≤O
(

log N
)

.

Note, however, that since the proof of Theorem 6.3.1 uses MLD on the inner code and Al-
gorithm 1 is the only known implementation of MLD, we have Tin = 2O(k) (which is what we
needed in (12.1). The construction time is even worse. There are 2O(kn) generator matrices; for
each of these, we must check the error rate for each of 2k possible transmitted codewords, and
for each codeword, computing the decoding error probability requires time 2O(n).2 Thus, the
construction time for Cin is 2O(n2).

2To see why the latter claim is true, note that there are 2n possible received words and given any one of these
received words, one can determine (i) if the MLD produces a decoding error in time 2O(k) and (ii) the probability
that the received word can be realized, given the transmitted codeword in polynomial time.

152

c1 c3 · · ·
cN−1

c2 c4 cN

⇓
c1 c2 c3 c4 · · · cN−1 cN

Figure 12.2: Error Correction cannot decrease during “folding." The example has k = 2 and a
pink cell implies an error.

12.4 The Outer Code

We need an outer code with the required properties. There are several ways to do this.
One option is to set Cout to be a Reed-Solomon code over F2k with k =Θ(log N) and rate 1− ε

2 .
Then the decoding algorithm Dout, could be the error decoding algorithm from Theorem 11.2.2.
Note that for this Dout we can set γ= ε

4 and the decoding time is Tout(N) =O(N 3).
Till now everything looks on track. However, the problem is the construction time for Cin,

which as we saw earlier is 2O(n2). Our choice of n implies that the construction time is 2O(log2 N) ≤
NO(log N), which of course is not polynomial time. Thus, the trick is to find a Cout defined over a

smaller alphabet (certainly no larger than 2O(
*

log N)). This is what we do next.

12.4.1 Using a binary code as the outer code

The main observation is that we can also use an outer code which is some explicit binary linear
code (call it C ′) that lies on the Zyablov bound and can be corrected from errors up to half its
design distance. We have seen that such a code can be constructed in polynomial time (Theo-
rem 11.3.3).

Note that even though C ′ is a binary code, we can think of C ′ as a code over F2k in the obvious
way: every k consecutive bits are considered to be an element in F2k (say via a linear map). Note
that the rate of the code does not change. Further, any decoder for C ′ that corrects bit errors
can be used to correct errors over F2k . In particular, if the algorithm can correct β fraction of
bit errors, then it can correct that same fraction of errors over F2k . To see this, think of the
received word as y ∈ (F2k)N ′/k , where N ′ is the block length of C ′ (as a binary code), which is at
a fractional Hamming distance at most ρ away from c ∈ (F2k)N ′/k . Here c is what once gets by
“folding" consecutive k bits into one symbol in some codeword c′ ∈ C ′. Now consider y′ ∈ F

N ′

2 ,
which is just “unfolded" version of y. Now note that each symbol in y that is in error (w.r.t. c)
leads to at most k bit errors in y′ (w.r.t. c′). Thus, in the unfolded version, the total number of
errors is at most

k ·ρ ·
N ′

k
= ρ ·N ′.

(See Figure 12.2 for an illustration for k = 2.) Thus to decode y, one can just “unfold" y to y′ and
use the decoding algorithm for C ′ (which can handle ρ fraction of errors) on y′.

153

We will pick Cout to be C ′ when considered over F2k , where we choose

k =Θ

(
log(1

γ)

ε2

)

.

Further, Dout is the GMD decoding algorithm (Algorithm 10) for C ′.
Now, to complete the specification of C∗, we relate γ to ε. The Zyablov bound gives δout =

(1−R)H−1(1− r), where R and r are the rates of the outer and inners codes for C ′. Now we can
set 1−R = 2

*
γ (which implies that R = 1−2

*
γ) and H−1(1− r) =

*
γ, which implies that r is3

1−O
(*

γ log 1
γ

)

. Since we picked Dout to be the GMD decoding algorithm, it can correct δout
2 = γ

fraction of errors in polynomial time, as desired.

The overall rate of Cout is simply R · r =
(

1−2
*
γ
)

·
(

1−O
(*

γ log 1
γ

))

. This simplifies to 1−

O
(*

γ log
(

1
γ

))

. Recall that we need this to be at least 1− ε
2 . Thus, we would be done here if we

could show that ε is Ω
(*

γ log 1
γ

)

, which would follow by setting

γ= ε3.

12.4.2 Wrapping Up

We now recall the construction, encoding and decoding time complexity for our construction

of C∗. The construction time for Cin is 2O(n2), which substituting for n, is 2O
(

1
ε4 log2(1

ε

)
)

. The
construction time for Cout, meanwhile, is only poly(N). Thus, our overall, construction time is

poly(N)+2O
(

1
ε4 log2(1

ε

)
)

.
As we have seen in Section 12.1, the encoding time for this code is O(N 2), and the decoding

time is NO(1)+N ·2O(n) = poly(N)+N ·2O
(

1
ε2 log

(1
ε

)
)

. We also have shown that the decoding error

probability is exponentially small: 2−Ω(γN

n) = 2−Ω(ε6N). Thus, we have proved the following
result:

Theorem 12.4.1. For every constant p and 0 < ε< 1−H(p), there exists a linear code C∗ of block

length N and rate at least 1−H(p)−ε, such that

(a) C∗ can be constructed in time poly(N)+2O(ε−5);

(b) C∗ can be encoded in time O(N 2); and

(c) There exists a poly(N)+N ·2O(ε−5) time decoding algorithm that has an error probability

of at most 2−Ω(ε6N) over the BSCp .

3Note that r = 1− H(
*
γ) = 1+

*
γ log

*
γ+ (1−

*
γ) log(1−

*
γ). Noting that log(1−

*
γ) = −

*
γ−Θ(γ), we can

deduce that r = 1−O(
*
γ log(1/γ)).

154

Thus, we have answered in the affirmative Question 6.3.1, which was the central open ques-
tion from Shannon’s work. However, there is a still somewhat unsatisfactory aspect of the result
above. In particular, the exponential dependence on 1/ε in the decoding time complexity is not
nice. This leads to the following question:

Question 12.4.1. Can we bring the high dependence on ε down to poly
(1
ε

)

in the decoding

time complexity?

12.5 Discussion and Bibliographic Notes

Forney answered Question 6.3.1 in the affirmative by using concatenated codes. (As was men-
tioned earlier, this was Forney’s motivation for inventing code concatenation: the implication
for the rate vs. distance question was studied by Zyablov later on.)

We now discuss Question 12.4.1. For the binary erasure channel, the decoding time com-
plexity can be brought down to N ·poly(1

ε) using LDPC codes, specifically a class known as Tor-
nado codes developed by Luby et al. [40]. The question for binary symmetric channels, however,
is still open. Recently there have been some exciting progress on this front by the construction
of the so-called Polar codes.

We conclude by noting an improvement to Theorem 12.4.1. We begin with a theorem due to
Spielman:

Theorem 12.5.1 ([51]). For every small enough β> 0, there exists an explicit Cout of rate 1
1+β and

block length N , which can correct Ω

(

β2

(log 1
β)2

)

errors, and has O(N) encoding and decoding.

Clearly, in terms of time complexity, this is superior to the previous option in Section 12.4.1.
Such codes are called “Expander codes.” One can essentially do the same calculations as in

Section 12.4.1 with γ = Θ

(
ε2

log2(1/ε)

)

.4 However, we obtain an encoding and decoding time of

N ·2poly(1
ε). Thus, even though we obtain an improvement in the time complexities as compared

to Theorem 12.4.1, this does not answer Question 12.4.1.

4This is because we need 1/(1+β) = 1−ε/2, which implies that β=Θ(ε).

155

