
Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-

ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY

and by Madhu Sudan at MIT.

This version is dated May 1, 2013. For the latest version, please go to

http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under

CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-

pressed in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2013.

This work is licensed under the Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444

Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 14

Efficiently Achieving List Decoding Capacity

In the previous chapters, we have seen these results related to list decoding:

• Reed-Solomon codes of rate R > 0 can be list-decoded in polynomial time from 1−
"

R

errors (Theorem 13.2.6). This is the best algorithmic list decoding result we have seen so
far.

• There exist codes of rate R > 0 that are
(

1−R −ε,O
(1
ε

))

-list decodable for q ≥ 2Ω(1
ε) (and

in particular for q = poly(n)) (Theorem 7.4.1 and Proposition 3.3.2). This of course is the
best possible combinatorial result.

Note that there is a gap between the algorithmic result and the best possible combinatorial
result. This leads to the following natural question:

Question 14.0.1. Are there explicit codes of rate R > 0 that can be list-decoded in polynomial

time from 1−R −ε fraction of errors for q ≤ pol y(n)?

In this chapter, we will answer Question 14.0.1 in the affirmative.

14.1 Folded Reed-Solomon Codes

We will now introduce a new type of code called the Folded Reed-Solomon codes. These codes
are constructed by combining every m consecutive symbols of a regular Reed-Solomon code
into one symbol from a larger alphabet. Note that we have already seen such a folding trick
when we instantiated the outer code in the concatenated code that allowed us to efficiently
achieve the BSCp capacity (Section 12.4.1). For a Reed-Solomon code that maps F

k
q → F

n
q , the

corresponding Folded Reed-Solomon code will map F
k
q → F

n/m
qm . We will analyze Folded Reed-

Solomon codes that are derived from Reed-Solomon codes with evaluation {1,γ,γ2,γ3, . . . ,γn−1},
where γ is the generator of F∗q and n ≤ q −1. Note that in the Reed-Solomon code, a message is
encoded as in Figure 14.1.

181

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

Figure 14.1: Encoding f (X) of degree≤ k−1 and coefficients in Fq corresponding to the symbols
in the message.

For m = 2, the conversion from Reed-Solomon to Folded Reed-Solomon can be visualized
as in Figure 14.2 (where we assume n is even).

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

⇓
f (1) f (γ2)

· · ·
f (γn−2)

f (γ) f (γ3) f (γn−1)

Figure 14.2: Folded Reed-Solomon code for m = 2

For general m ≥ 1, this transformation will be as in Figure 14.3 (where we assume that m

divides n).

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

⇓
f (1) f (γm) f (γ2m)

· · ·

f (γn−m)

f (γ) f (γm+1) f (γ2m+1) f (γn−m+1)

...
...

...
...

f (γm−1) f (γ2m−1) f (γ3m−1) f (γn−1)

Figure 14.3: Folded Reed-Solomon code for general m ≥ 1

More formally, here is the definition of folded Reed-Solomon codes:

Definition 14.1.1 (Folded Reed-Solomon Code). The m-folded version of an [n,k]q Reed-Solomon
code C (with evaluation points {1,γ, . . . ,γn−1}), call it C ′, is a code of block length N = n/m over
Fqm , where n ≤ q −1. The encoding of a message f (X), a polynomial over Fq of degree at most
k −1, has as its j ’th symbol, for 0 ≤ j < n/m, the m-tuple

(

f
(

γ j m
)

, f
(

γ j m+1) , · · · , f
(

γ j m+m−1)).
In other words, the codewords of C ′ are in one-one correspondence with those of the Reed-
Solomon code C and are obtained by bundling together consecutive m-tuple of symbols in
codewords of C .

182

14.1.1 The Intuition Behind Folded Reed-Solomon Codes

We first make the simple observation that the folding trick above cannot decrease the list de-
codability of the code. (We have already seen this argument earlier in Section 12.4.1.)

Claim 14.1.1. If the Reed-Solomon code can be list-decoded from ρ fraction of errors, then the

corresponding folded Reed-Solomon code with folding parameter m can also be list-decoded from

ρ fraction of errors.

Proof. The idea is simple: If the Reed-Solomon code can be list decoded from ρ fraction of
errors (by say an algorithm A), the Folded Reed-Solomon code can be list decoded by “unfold-
ing" the received word and then running A on the unfolded received word and returning the
resulting set of messages. Algorithm 16 has a more precise statement.

Algorithm 16 Decoding Folded Reed-Solomon Codes by Unfolding

INPUT: y = ((y1,1, . . . , y1,m), . . . , (yn/m,1, . . . , yn/m,m)) ∈ F
n/m
qm

OUTPUT: A list of messages in F
k
q

1: y′ ← (y1,1, . . . , y1,m , . . . , yn/m,1, . . . , yn/m,m) ∈ F
n
q .

2: RETURN A (y′)

The reason why Algorithm 16 works is simple. Let m ∈ F
k
q be a message. Let RS(m) and

FRS(m) be the corresponding Reed-Solomon and folded Reed-Solomon codewords. Now for
every i ∈ [n/m], if FRS(m)i += (yi ,1, . . . , yi ,n/m) then in the worst-case for every j ∈ [n/m], RS(m)(i−1)n/m+ j +=
yi , j : i.e. one symbol disagreement over Fqm can lead to at most m disagreements over Fq . See
Figure 14.4 for an illustration.

f (1) f (γ2)
· · ·

f (γn−2)

f (γ) f (γ3) f (γn−1)

⇓
f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

Figure 14.4: Error pattern after unfolding. A pink cell means an error: for the Reed-Solomon
code it is for RS(m) with y′ and for folded Reed-Solomon code it is for FRS(m) with y

This implies that for any m ∈ F
k
q if ∆(y,FRS(m)) ≤ ρ · n

m , then ∆(y′,RS(m)) ≤ m ·ρ · n
m = ρ ·n,

which by the properties of algorithm A implies that Step 2 will output m, as desired.

The intuition for a strict improvement by using Folded Reed-Solomon codes is that if the
fraction of errors due to folding increases beyond what it can list-decode from, that error pat-
tern does not need to be handled and can be ignored. For example, suppose a Reed-Solomon

183

f (1) f (γ) f (γ2) f (γ3) · · · f (γn−2) f (γn−1)

⇓
f (1) f (γ2)

· · ·
f (γn−2)

f (γ) f (γ3) f (γn−1)

Figure 14.5: An error pattern after folding. The pink cells denotes the location of errors

code that can be list-decoded from up to 1
2 fraction of errors is folded into a Folded Reed-

Solomon code with m = 2. Now consider the error pattern in Figure 14.5.
The error pattern for Reed-Solomon code has 1

2 fraction of errors, so any list decoding al-
gorithm must be able to list-decode from this error pattern. However, for the Folded Reed-
Solomon code the error pattern has 1 fraction of errors which is too high for the code to list-
decode from. Thus, this “folded" error pattern case can be discarded from the ones that a list
decoding algorithm for folded Reed-Solomon code needs to consider. This is of course one
example– however, it turns out that this folding operation actually rules out a lot of error pat-
terns that a list decoding algorithm for folded Reed-Solomon code needs to handle (even be-
yond the current best 1−

"
R bound for Reed-Solomon codes). Put another way, an algorithm

for folded Reed-Solomon codes has to solve the list decoding problem for the Reed-Solomon
codes where the error patterns are “bunched" together (technically they’re called bursty er-
rors). Of course, converting this intuition into a theorem takes more work and is the subject
of this chapter.

Wait a second... The above argument has a potential hole– what if we take the argument to
the extreme and "cheat" by setting m = n where any error pattern for the Reed-Solomon code
will result in an error pattern with 100% errors for the Folded Reed-Solomon code: thus, we
will only need to solve the problem of error detection for Reed-Solomon codes (which we can
easily solve for any linear code and in particular for Reed-Solomon codes)? It is a valid concern
but we will “close the loophole" by only using a constant m as the folding parameter. This
will still keep q to be polynomially large in n and thus, we would still be on track to answer
Question 14.0.1. Further, if we insist on smaller list size (e.g. one independent of n), then we can
use code concatenation to achieve capacity achieving results for codes over smaller alphabets.
(See Section 14.4 for more.)

General Codes. We would like to point out that the folding argument used above is not specific
to Reed-Solomon codes. In particular, the argument for the reduction in the number of error
patterns holds for any code. In fact, one can prove that for general random codes, with high
probability, folding does strictly improve the list decoding capabilities of the original code. (The
proof is left as an exercise.)

184

14.2 List Decoding Folded Reed-Solomon Codes: I

We begin with an algorithm for list decoding folded Reed-Solomon codes that works with agree-
ment t ∼ mRN . Note that this is a factor m larger than the RN agreement we ultimately want.
In the next section, we will see how to knock off the factor of m.

Before we state the algorithm, we formally (re)state the problem we want to solve:

• Input: An agreement parameter 0 ≤ t ≤ N and the received word:

y =

y0 ym

· · ·
yn−m

...
...

...
ym−1 y2m−1 yn−1

 ∈ F

m×N
q , N =

n

m

• Output: Return all polynomials f (X) ∈ Fq [X] of degree at most k −1 such that for at
least t values of 0 ≤ i < N

f
(

γmi
)

...
f
(

γm(i+1)−1)

=

ymi
...

ym(i+1)−1

 (14.1)

The algorithm that we will study is a generalization of the Welch-Berlekamp algorithm (Al-
gorithm 12). However unlike the previous list decoding algorithms for Reed-Solomon codes
(Algorithms 13, 14 and 15), this new algorithm has more similarities with the Welch-Berlekamp
algorithm. In particular, for m = 1, the new algorithm is exactly the Welch-Berlekamp algo-
rithm. Here are the new ideas in the algorithm for the two-step framework that we have seen in
the previous chapter:

• Step 1: We interpolate using (m+1)-variate polynomial, Q(X ,Y1, . . . ,Ym), where degree of
each variable Yi is exactly one. In particular, for m = 1, this interpolation polynomial is
exactly the one used in the Welch-Berlekamp algorithm.

• Step 2: As we have done so far, in this step, we output all "roots" of Q. Two remarks are in
order. First, unlike Algorithms 13, 14 and 15, the roots f (X) are no longer simpler linear
factors Y − f (X), so one cannot use a factorization algorithm to factorize Q(X ,Y1, . . . ,Ym).
Second, the new insight in this algorithm, is to show that all the roots form an (affine)
subspace,1 which we can use to compute the roots.

Algorithm 17 has the details.

1An affine subspace of Fk
q is a set {v+u|u ∈ S}, where S ⊆ F

k
q is a linear subspace and v ∈ F

k
q .

185

Algorithm 17 The First List Decoding Algorithm for Folded Reed-Solomon Codes
INPUT: An agreement parameter 0 ≤ t ≤ N , parameter D ≥ 1 and the received word:

y =

y0 ym

· · ·
yn−m

...
...

...
ym−1 y2m−1 yn−1

 ∈ F

m×N
q , N =

n

m

OUTPUT: All polynomials f (X) ∈ Fq [X] of degree at most k −1 such that for at least t values of
0 ≤ i < N

f
(

γmi
)

...
f
(

γm(i+1)−1)

=

ymi
...

ym(i+1)−1

 (14.2)

1: Compute a non-zero Q(X ,Y1, . . . ,Ym) where

Q(X ,Y1, . . . ,Ym) = A0(X)+ A1(X)Y1 + A2(X)Y2 +·· ·+ Am(X)Ym

with deg(A0) ≤ D +k −1 and deg(A j) ≤ D for 1 ≤ j ≤ m such that

Q(γmi , ymi , · · · , ym(i+1)−1) = 0, ∀0 ≤ i < N (14.3)

2: Ł ←0
3: FOR every f (X) ∈ Fq [X] such that Q(X , f (X), f (γX), f (γ2X), . . . , f (γm−1X)) = 0 DO

4: IF deg(f) ≤ k −1 and f (X) satisfies (14.2) for at least t values of i THEN

5: Add f (X) to Ł.

6: RETURN Ł

Correctness of Algorithm 17. In this section, we will only concentrate on the correctness of
the algorithm and analyze its error correction capabilities. We will defer the analysis of the
algorithm (and in particular, proving a bound on the number of polynomials that are output by
Step 6) till the next section.

We first begin with the claim that there always exists a non-zero choice for Q in Step 1 using
the same arguments that we have used to prove the correctness of Algorithms 14 and 15:

Claim 14.2.1. If (m +1)(D +1)+k−1 > N , then there exists a non-zero Q (X ,Y1, ...Ym) that satis-

fies the required properties of Step 1.

Proof. As in the proof of correctness of Algorithms 13, 14 and 15, we will think of the constraints
in (14.3) as linear equations. The variables are the coefficients of Ai (X) for 0 ≤ i ≤ m. With the
stipulated degree constraints on the Ai (X)’s, note that the number of variables participating in
(14.3) is

D +k +m(D +1) = (m +1)(D +1)+k −1.

186

The number of equations is N . Thus, the condition in the claim implies that we have strictly
more variables then equations and thus, there exists a non-zero Q with the required properties.

Next, we argue that the root finding step works (again using an argument very similar to
those that we have seen for Algorithms 13, 14 and 15):

Claim 14.2.2. If t > D+k−1, then all polynomial f (X) ∈ Fq [X] of degree at most k−1 that agree

with the received word in at least t positions is returned by Step 6.

Proof. Define the univariate polynomial

R (X) =Q
(

X , f (X) , f
(

γX
)

, f
(

γm−1X
))

.

Note that due to the degree constraints on the Ai (X)’s and f (X), we have

deg(R) ≤ D +k −1,

since deg(f (γi X)) = deg(f (X)). On the other hand, for every 0 ≤ i < N where (14.1) is satisfied
we have

R
(

γmi
)

=Q
(

γmi , ymi , . . . , ym(i+1)−1

)

= 0,

where the first equality follows from (14.1), while the second equality follows from (14.3). Thus
R(X) has at least t roots. Thus, the condition in the claim implies that R(X) has more roots then
its degree and thus, by the degree mantra (Proposition 5.2.3) R(X) ≡ 0, as desired.

Note that Claims 14.2.1 and 14.2.2 prove the correctness of the algorithm. Next we analyze
the fraction of errors the algorithm can correct. Note that the condition in Claim 14.2.1 is satis-
fied if we pick

D =
⌊

N −k +1
m +1

⌋

.

This in turn implies that the condition in Claim 14.2.2 is satisfied if

t >
N −k +1

m +1
+k −1 =

N +m(k −1)
m +1

.

Thus, the above would be satisfied if

t ≥
N

m +1
+

mk

m +1
= N

(
1

m +1
+mR

(m

m +1

)
)

,

where the equality follows from the fact that k = mRN .
Note that when m = 1, the above bound exactly recovers the bound for the Welch-Berlekamp

algorithm (Theorem 13.1.4). Thus, we have shown that

Theorem 14.2.3. Algorithm 17 can list decode folded Reed-Solomon code with folding parameter

m ≥ 1 and rate R up to m
m+1 (1−mR) fraction of errors.

187

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

m=1
m=2
m=2
m=4

Johnson bound

Figure 14.6: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 17 for folding parameter m = 1,2,3 and 4. The Johnson bound is also plotted for
comparison. Also note that the bound for m = 1 is the Unique decoding bound achieved by
Algorithm 12.

See Figure 14.2 for an illustration of the tradeoff for m = 1,2,3,4.
Note that if we can replace the mR factor in the bound from Theorem 14.2.3 by just R then

we can approach the list decoding capacity bound of 1−R. (In particular, we would be able
to correct 1−R − ε fraction of errors if we pick m = O(1/ε).) Further, we need to analyze the
number of polynomials output by the root finding step of the algorithm (and then analyze the
runtime of the algorithm). In the next section, we show how we can “knock-off" the extra factor
m (and we will also bound the list size).

14.3 List Decoding Folded Reed-Solomon Codes: II

In this section, we will present the final version of the algorithm that will allow us to answer
Question 14.0.1 in the affirmative. We start off with the new idea that allows us to knock off the
factor of m. (It would be helpful to keep the proof of Claim 14.2.2 in mind.)

To illustrate the idea let us consider the folding parameter to be m = 3. Let f (X) be a poly-
nomial of degree at most k −1 that needs to be output and let 0 ≤ i < N be a position where it
agrees with the received word. (See Figure 14.7 for an illustration.)

The idea is to “exploit" this agreement over one F
3
q symbol and convert it into two agree-

ments over Fq2 . (See Figure 14.8 for an illustration.)

188

f (γ3i) f (γ3i+1) f (γ3i+2)

y3i y3i+1 y3i+2

Figure 14.7: An agreement in position i .

f (γ3i) f (γ3i+1) f (γ3i+1) f (γ3i+2)

y3i y3i+1 y3i+1 y3i+2

Figure 14.8: More agreement with a sliding window of size 2.

Thus, in the proof of Claim 14.2.2, for each agreement we can now get two roots for the
polynomial R(X). In general for an agreement over one Fqm symbols translates into m − s +1
agreement over Fs

q for any 1 ≤ s ≤ m (by “sliding a window" of size s over the m symbols from
Fq). Thus, in this new idea the agreement is m− s+1 times more than before which leads to the
mR term in Theorem 14.2.3 going down to mR

m−s+1 . Then making s smaller than m but still large
enough we can get down the relative agreement to R + ε, as desired. There is another change
that needs to be done to make the argument go through: the interpolation polynomial Q now
has to be (s +1)-variate instead of the earlier (m +1)-variate polynomial. Algorithm 18 has the
details.

Correctness of Algorithm 18. Next, we analyze the correctness of Algorithm 18 as well as com-
pute its list decoding error bound. We begin with the result showing that there exists a Q with
the required properties for Step 1.

Lemma 14.3.1. If D ≥
⌊

N (m−s+1)−k+1
s+1

⌋

, then there exists a non-zero polynomial Q(X ,Y1, ...,Ys)
that satisfies Step 1 of the above algorithm.

Proof. Let us consider all coefficients of all polynomials Ai as variables. Then the number of
variables will be

D +k + s(D +1) = (s +1)(D +1)+k −1.

On the other hand, the number of constraints in (14.5), i.e. the number of equations when
all coefficients of all polynomials Ai are considered variables) will be N (m − s +1).

Note that if we have more variables than equations, then there exists a non-zero Q that
satisfies the required properties of Step 1. Thus, we would be done if we have:

(s +1)(D +1)+k −1 > N (m − s +1),

which is equivalent to:

D >
N (m − s +1)−k +1

s +1
−1.

The choice of D in the statement of the claim satisfies the condition above, which complete the
proof.

189

Algorithm 18 The Second List Decoding Algorithm for Folded Reed-Solomon Codes
INPUT: An agreement parameter 0 ≤ t ≤ N , parameter D ≥ 1 and the received word:

y =

y0 ym

· · ·
yn−m

...
...

...
ym−1 y2m−1 yn−1

 ∈ F

m×N
q , N =

n

m

OUTPUT: All polynomials f (X) ∈ Fq [X] of degree at most k −1 such that for at least t values of
0 ≤ i < N

f
(

γmi
)

...
f
(

γm(i+1)−1)

=

ymi
...

ym(i+1)−1

 (14.4)

1: Compute non-zero polynomial Q(X ,Y1, ..,Ys) as follows:

Q(X ,Y1, ..,Ys) = A0(X)+ A1(X)Y1 + A2(X)Y2 + ..+ As(X)Ys ,

with deg[A0] ≤ D +k −1 and deg[Ai] ≤ D for every 1 ≤ i ≤ s such that for all 0 ≤ i < N and
0 ≤ j ≤ m − s, we have

Q(γi m+ j , yi m+ j , ..., yi m+ j+s−1) = 0. (14.5)

2: Ł ←0
3: FOR every f (X) ∈ Fq [X] such that

Q
(

X , f (X), f
(

γX
)

, f
(

γ2X
)

, . . . , f
(

γs−1X
))

≡ 0 (14.6)

DO

4: IF deg(f) ≤ k −1 and f (X) satisfies (14.2) for at least t values of i THEN

5: Add f (X) to Ł.

6: RETURN Ł

Next we argue that the root finding step works.

Lemma 14.3.2. If t > D+k−1
m−s+1 , then every polynomial f (X) that needs to be output satisfies (14.6).

Proof. Consider the polynomial R(X) =Q
(

X , f (X), f
(

γX
)

, ..., f
(

γs−1X
))

. Because the degree of
f
(

γ$X
)

(for every 0 ≤ $≤ s −1) is at most k −1,

deg(R) ≤ D +k −1. (14.7)

Let f(X) be one of the polynomials of degree at most k −1 that needs to be output, and f (X)
agrees with the received word at column i for some 0 ≤ i < N , that is:

190

f
(

γmi
)

f
(

γmi+1)

·
·
·

f
(

γm(i+1)−1)

=

ymi

ymi+1

·
·
·

ym(i+1)−1

,

then for all 0 ≤ j ≤ m − s, we have:

R
(

γmi+ j
)

=Q
(

γmi+ j , f
(

γmi+ j
)

, f
(

γmi+1+ j
)

, ..., f
(

γmi+s−1+ j
))

=Q
(

γmi+ j , ymi+ j , ymi+1+ j , ..., ymi+s−1+ j

)

= 0.

In the above, the first equality follows as f (X) agrees with y in column i while the second equal-
ity follows from (14.5). Thus, the number of roots of R(X) is at least

t (m − s +1) > D +k −1 ≥ deg(R),

where the first inequality follows from the assumption in the claim and the second inequality
follows from (14.7). Hence, by the degree mantra R(X) ≡ 0, which shows that f (X) satisfies
(14.6), as desired.

14.3.1 Error Correction Capability

Now we analyze the the fraction of errors the algorithm above can handle. (We will come back
to the thorny issue of proving a bound on the output list size for the root finding step in Sec-
tion 14.3.2.)

The argument for the fraction of errors follows the by now standard route. To satisfy the
constraint in Lemma 14.3.1, we pick

D =
⌊

N (m − s +1)−k +1
s +1

⌋

.

This along with the constraint in Lemma 14.3.2, implies that the algorithm works as long as

t >
⌊

D +k −1
m − s +1

⌋

.

The above is satisfied if we choose

t >
N (m−s+1)−k+1

s+1 +k −1

m − s +1
=

N (m − s +1)−k +1+ (k −1)(s +1)
(m − s +1)(s +1)

=
N (m − s +1)+ s(k −1)

(s +1)(m − s +1)
.

Thus, we would be fine if we pick

t >
N

s +1
+

s

s +1
·

k

m − s +1
= N

(
1

s +1
+

(s

s +1

)(m

m − s +1

)

·R

)

,

where the equality follows from the fact that k = mRN . This implies the following result:

191

Theorem 14.3.3. Algorithm 18 can list decode folded Reed-Solomon code with folding parameter

m ≥ 1 and rate R up to s
s+1 (1−mR/(m − s +1)) fraction of errors.

See Figure 14.3.1 for an illustration of the bound above.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

m=6,s=6
m=9, s=6

m=12, s=6
m=15, s=6

Johnson bound

Figure 14.9: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 18 for s = 6 and folding parameter m = 6,9,12 and 15. The Johnson bound is also
plotted for comparison.

14.3.2 Bounding the Output List Size

We finally address the question of bounding the output list size in the root finding step of the
algorithm. We will present a proof that will immediately lead to an algorithm to implement the
root finding step. We will show that there are at most q s−1 possible solutions for the root finding
step.

The main idea is the following: think of the coefficients of the output polynomial f (X) as
variables. Then the constraint (14.6) implies D+k linear equations on these k variables. It turns
out that if one picks only k out of these D+k constraints, then the corresponding constraint ma-
trix has rank at least k − s +1, which leads to the claimed bound. Finally, the claim on the rank
of the constraint matrix follows by observing (and this is the crucial insight) that the constraint
matrix is upper triangular. Further, the diagonal elements are evaluation of a non-zero polyno-
mial of degree at most s − 1 in k distinct elements. By the degree mantra (Proposition 5.2.3),
this polynomial can have at most s−1 roots, which implies that at least k− s+1 elements of the

192

=

B(1)
B(γ)

B(γ2)
B(γ3)

B(γk−2)
B(γk−1)

0

×

f0

f1

fk−1

fk−2

fk−3

fk−4

−a0,k−1

−a0,k−2

−a0,3

−a0,2

−a0,1

−a0,0

Figure 14.10: The system of linear equations with the variables f0, . . . , fk−1 forming the coeffi-
cients of the polynomial f (X) =

∑k−1
i=0 fi X i that we want to output. The constants a j ,0 are ob-

tained from the interpolating polynomial from Step 1. B(X) is a non-zero polynomial of degree
at most s −1.

diagonal are non-zero, which then implies the claim. See Figure 14.10 for an illustration of the
upper triangular system of linear equations.

Next, we present the argument above in full detail. (Note that the constraint on (14.8) is the
same as the one in (14.6) because of the constraint on the structure of Q imposed by Step 1.)

Lemma 14.3.4. There are at most q s−1 solutions to f0, f1, .., fk−1 (where f (X) = f0 + f1X + ...+
fk−1X k−1) to the equations

A0(X)+ A1(X) f (X)+ A2(X) f
(

γX
)

+ ...+ As(X) f
(

γs−1X
)

≡ 0 (14.8)

Proof. First we assume that X does not divide all of the polynomials A0, A1, ..., As . Then it im-
plies that there exists i∗ > 0 such that the constant term of the polynomial Ai∗(X) is not zero.
(Because otherwise, since X |A1(X), ..., As(X), by (14.8), we have X divides A0(X) and hence X

divide all the Ai (X) polynomials, which contradicts the assumption.)
To facilitate the proof, we define few auxiliary variables ai j such that

Ai (X) =
D+k−1∑

j=0
ai j X j for every 0 ≤ i ≤ s,

and define the following univariate polynomial:

B(X) = a1,0 +a2,0X +a3,0X 2 + ...+as,0X s−1. (14.9)

Notice that ai∗,0 += 0, so B(X) is non-zero polynomial. And because degree of B(X) is at most
s −1, by the degree mantra (Proposition 5.2.3), B(X) has at most s −1 roots. Next, we claim the
following:

193

Claim 14.3.5. For every 0 ≤ j ≤ k −1:

• If B(γ j) += 0, then f j is uniquely determined by f j−1, f j−2, . . . , f0.

• If B(γ j) = 0, then f j is unconstrained, i.e. f j can take any of the q values in Fq .

We defer the proof of the claim above for now. Suppose that the above claim is correct. Then
as γ is a generator of Fq , 1,γ,γ2, ...,γk−1 are distinct (since k −1 ≤ q −2). Further, by the degree
mantra (Proposition 5.2.3) at most s − 1 of these elements are roots of the polynomial B(X).
Therefore by Claim 14.3.5, the number of solutions to f0, f1, ..., fk−1 is at most q s−1. 2

We are almost done except we need to remove our earlier assumption that X does not divide
every Ai . Towards this end, we essentially just factor out the largest common power of X from
all of the Ai ’s, and proceed with the reduced polynomial. Let l ≥ 0 be the largest l such that
Ai (X) = X l A′

i (X) for 0 ≤ i ≤ s; then X does not divide all of A′
i (X) and we have:

X l (

A′
0(X)+ A′

1(X) f (X)+·· ·+ A′
s(X) f (γs−1X)

)

≡ 0.

Thus we can do the entire argument above by replacing Ai (X) with A′
i (X) since the above con-

straint implies that A′
i (X)’s also satisfy (14.8).

Next we prove Claim 14.3.5.

Proof of Claim 14.3.5. Recall that we can assume that X does not divide all of {A0(X), . . . , As(X)}.
Let C (X) = A0(X)+A1(X) f (X)+·· ·+As f

(

γs−1X
)

. Recall that we have C (X) ≡ 0. If we expand
out each polynomial multiplication, we have:

C (X) =a0,0 +a0,1X +·· ·+a0,D+k−1X D+k−1

+
(

a1,0 +a1,1X +·· ·+a1,D+k−1X D+k−1
)(

f0 + f1X + f2X 2 +·· ·+ fk−1X k−1
)

+
(

a2,0 +a2,1X +·· ·+a2,D+k−1X D+k−1
)(

f0 + f1γX + f2γ
2X 2 +·· ·+ fk−1γ

k−1X k−1
)

...

+
(

as,0 +as,1X +·· ·+as,D+k−1X D+k−1
)(

f0 + f1γ
s−1X + f2γ

2(s−1)X 2 +·· ·+ fk−1γ
(k−1)(s−1)X k−1

)

(14.10)

Now if we collect terms of the same degree, we will have a polynomial of the form:

C (X) = c0 + c1X + c2X 2 +·· ·+ cD+k−1X D+k−1.

2Build a “decision tree" with f0 as the root and f j in the j th level: each edge is labeled by the assigned value to
the parent node variable. For any internal node in the j th level, if B(γ j) += 0, then the node has a single child with
the edge taking the unique value promised by Claim 14.3.5. Otherwise the node has q children with q different
labels from Fq . By Claim 14.3.5, the number of solutions to f (X) is upper bounded by the number of nodes in the
kth level in the decision tree, which by the fact that B has at most s −1 roots is upper bounded by q s−1.

194

So we have D+k linear equations in variables f0, . . . , fk−1, and we are seeking those solutions
such that c j = 0 for every 0 ≤ j ≤ D +k −1. We will only consider the 0 ≤ j ≤ k −1 equations. We

first look at the equation for j = 0: c0 = 0. This implies the following equalities:

0 = a0,0 + f0a1,0 + f0a2,0 +·· ·+ f0as,0 (14.11)

0 = a0,0 + f0
(

a1,0 +a2,0 +·· ·+as,0
)

(14.12)

0 = a0,0 + f0B(1). (14.13)

In the above (14.11) follows from (14.10), (14.12) follows by simple manipulation while (14.13)
follows from the definition of B(X) in (14.9).

Now, we have two possible cases:

• Case 1: B(1) += 0. In this case, (14.13) implies that f0 =
−a0,0
B(1) . In particular, f0 is fixed.

• Case 2: B(1) = 0. In this case f0 has no constraint (and hence can take on any of the q

values in Fq).

Now consider the equation for j = 1: c1 = 0. Using the same argument as we did for j = 0,
we obtain the following sequence of equalities:

0 = a0,1 + f1a1,0 + f0a1,1 + f1a2,0γ+ f0a2,1 +·· ·+ f1as,0γ
s−1 + f0as,1

0 = a0,1 + f1
(

a1,0 +a2,0γ+·· ·+as,0γ
s−1)+ f0

(
s∑

l=1
al ,1

)

0 = a0,1 + f1B(γ)+ f0b(1)
0 (14.14)

where b(1)
0 =

∑s
l=1 al ,1 is a constant. We have two possible cases:

• Case 1: B(γ) += 0. In this case, by (14.14), we have f1 =
−a0,1− f0b(1)

0
B(γ) and there is a unique

choice for f1 given fixed f0.

• Case 2: B(γ) = 0. In this case, f1 is unconstrained.

Now consider the case of arbitrary j : c j = 0. Again using similar arguments as above, we get:

0 = a0, j + f j (a1,0 +a2,0γ
j +a3,0γ

2 j +·· ·+as,0γ
j (s−1))

+ f j−1(a1,1 +a2,1γ
j−1 +a3,1γ

2(j−1) +·· ·+as,1γ
(j−1)(s−1))

...

+ f1(a1, j−1 +a2, j−1γ+a3, j−1γ
2 +·· ·+as, j−1γ

s−1)

+ f0(a1, j +a2, j +a3, j +·· ·+as, j)

0 = a0, j + f j B(γ j)+
j−1∑

l=0
fl b

(j)
l

(14.15)

where b
(j)
l

=
∑s

ι=1 aι, j−l ·γl (ι−1) are constants for 0 ≤ j ≤ k −1.
We have two possible cases:

195

• Case 1: B(γ j) += 0. In this case, by (14.15), we have

f j =
−a0, j −

∑ j−1
l=0 fl b

(j)
l

B(γ j)
(14.16)

and there is a unique choice for f j given fixed f0, . . . , f j−1.

• Case 2: B(γ j) = 0. In this case f j is unconstrained.

This completes the proof.

We now revisit the proof above and make some algorithmic observations. First, we note that
to compute all the tuples (f0, . . . , fk−1) that satisfy (14.8) one needs to solve the linear equations
(14.15) for j = 0, . . . ,k −1. One can state this system of linear equation as (see also Figure 14.10)

C ·

f0
...

fk−1

=

−a0,k−1
...

−a0,0

 ,

where C is a k ×k upper triangular matrix. Further each entry in C is either a 0 or B(γ j) or b
(j)
l

–
each of which can be computed in O(s log s) operations over Fq . Thus, we can setup this system
of equations in O

(

s log sk2) operations over Fq .
Next, we make the observation that all the solutions to (14.8) form an affine subspace. Let

0 ≤ d ≤ s − 1 denote the number of roots of B(X) in {1,γ, . . . ,γk−1}. Then since there will be
d unconstrained variables among f0, . . . , fk−1 (one of every j such that B(γ j) = 0), it is not too

hard to see that all the solutions will be in the set
{

M ·x+z|x ∈ F
d
q

}

, for some k×d matrix M and

some z ∈ F
k
q . Indeed every x ∈ F

d
q corresponds to an assignment to the d unconstrained variables

among f0, . . . , f j . The matrix M and the vector z are determined by the equations in (14.16).
Further, since C is upper triangular, both M and z can be computed with O

(

k2) operations over
Fq .

The discussion above implies the following:

Corollary 14.3.6. The set of solutions to (14.8) are contained in an affine subspace
{

M ·x+z|x ∈ F
d
q

}

for some 0 ≤ d ≤ s−1 and M ∈ F
k×d
q and z ∈ F

k
q . Further, M and z can be computed from the poly-

nomials A0(X), . . . , As(X) with O(s log sk2) operations over Fq .

14.3.3 Algorithm Implementation and Runtime Analysis

In this sub-section, we discuss how both the interpolation and root finding steps of the algo-
rithm can be implemented and analyze the run time of each step.

Step 1 involves solving N m linear equation in O(N m) variables and can e.g. be solved by
Gaussian elimination in O((N m)3) operations over Fq . This is similar to what we have seen for
Algorithms 13, 14 and 15. However, the fact that the interpolation polynomial has total degree

196

of one in the variables Y1, . . . ,Ys implies a much faster algorithm. In particular, one can perform
the interpolation in O(N m log2(N m) loglog(N m)) operations over Fq .

The root finding step involves computing all the “roots" of Q. The proof of Lemma 14.3.4
actually suggests Algorithm 19.

Algorithm 19 The Root Finding Algorithm for Algorithm 18
INPUT: A0(X), . . . , As(X)
OUTPUT: All polynomials f (X) of degree at most k −1 that satisfy (14.8)

1: Compute $ such that X $ is the largest common power of X among A0(X), . . . , As(X).
2: FOR every 0 ≤ i ≤ s DO

3: Ai (X) ← Ai (X)
X $.

4: Compute B(X) according to (14.9)
5: Compute d , z and M such that the solutions to the k linear system of equations in (14.15)

lie in the set
{

M ·x+z|x ∈ F
d
q

}

.
6: Ł ←0
7: FOR every x ∈ F

d
q DO

8: (f0, . . . , fk−1) ← M ·x+z.
9: f (X) ←

∑k−1
i=0 fi ·X i .

10: IF f (X) satisfies (14.8) THEN

11: Add f (X) to Ł.

12: RETURN Ł

Next, we analyze the run time of the algorithm. Throughout, we will assume that all polyno-
mials are represented in their standard coefficient form.

Step 1 just involves figuring out the smallest power of X in each Ai (X) that has a non-zero
coefficient from which one can compute the value of $. This can be done with O(D +k + s(D +
1)) = O(N m) operations over Fq . Further, given the value of $ one just needs to “shift" all the
coefficients in each of the Ai (X)’s to the right by $, which again can be done with O(N m) oper-
ations over Fq .

Now we move to the root finding step. The run time actually depends on what it means to
“solve" the linear system. If one is happy with a succinct description of a set of possible solution
that contains the actual output then one can halt Algorithm 19 after Step 5 and Corollary 14.3.6
implies that this step can be implemented in O

(

s log sk2) = O
(

s log s(N m)2) operations over
Fq . However, if one wants the actual set of polynomials that need to be output, then the only
known option so far is to check all the q s−1 potential solutions as in Steps 7-11. (However, we’ll
see a twist in Section 14.4.) The latter would imply a total of O(s log s(N m)2)+O(q s−1 · (N m)2)
operations over Fq .

Thus, we have the following result:

Lemma 14.3.7. With O(s log s(N m)2) operations over Fq , the algorithm above can return an

affine subspace of dimension s − 1 that contains all the polynomials of degree at most k − 1

197

that need to be output. Further, the exact set of solution can be computed in with additional

O(q s−1 · (N m)2) operations over Fq .

14.3.4 Wrapping Up

By Theorem 14.3.3, we know that we can list decode a folded Reed-Solomon code with folding
parameter m ≥ 1 up to

s

s +1
·
(

1−
m

m − s +1
·R

)

(14.17)

fraction of errors for any 1 ≤ s ≤ m.
To obtain our desired bound 1−R −ε fraction of errors, we instantiate the parameter s and

m such that
s

s +1
≥ 1−ε and

m

m − s +1
≤ 1+ε. (14.18)

It is easy to check that one can choose

s =Θ(1/ε) and m =Θ(1/ε2)

such that the bounds in (14.18) are satisfied. Using the bounds from (14.18) in (14.17) implies
that the algorithm can handle at least

(1−ε)(1− (1+ε)R) = 1−ε−R +ε2R > 1−R −ε

fraction of errors, as desired.
We are almost done since Lemma 14.3.7 shows that the run time of the algorithm is qO(s).

The only thing we need to choose is q : for the final result we pick q to be the smallest power
of 2 that is larger than N m + 1. Then the discussion above along with Lemma 14.3.7 implies
the following result (the claim on strong explicitness follows from the fact that Reed-Solomon
codes are strongly explicit):

Theorem 14.3.8. There exist strongly explicit folded Reed-Solomon codes of rate R that for large

enough block length N can be list decoded from 1−R −ε fraction of errors (for any small enough

ε> 0) in time
(

N
ε

)O(1/ε)
. The worst-case list size is

(
N
ε

)O(1/ε)
and the alphabet size is

(
N
ε

)O(1/ε2)
.

14.4 Bibliographic Notes and Discussion

There was no improvement to the Guruswami-Sudan result (Theorem 13.2.6) for about seven
years till Parvaresh and Vardy showed that “Correlated" Reed-Solomon codes can be list-decoded
up to 1 − (mR)

1
m+1 fraction of errors for m ≥ 1 [43]. Note that for m = 1, correlated Reed-

Solomon codes are equivalent to Reed-Solomon codes and the result of Parvaresh and Vardy re-
covers Theorem 13.2.6. Immediately, after that Guruswami and Rudra [24] showed that Folded
Reed-Solomon codes can achieve the list-decoding capacity of 1 − R − ε and hence, answer

198

Question 14.0.1 in the affirmative. Guruswami [19] reproved this result but with a much sim-
pler proof. In this chapter, we studied the proof due to Guruswami. Guruswami in [19] cred-
its Salil Vadhan for the the interpolation step. An algorithm presented in Brander’s thesis [2]
shows that for the special interpolation in Algorithm 18, one can perform the interpolation in
O(N m log2(N m) loglog(N m)) operations over Fq . The idea of using the “sliding window" for list
decoding Folded Reed-Solomon codes is originally due to Guruswami and Rudra [23].

The bound of q s−1 on the list size for folded Reed-Solomon codes was first proven in [23] by
roughly the following argument. One reduced the problem of finding roots to finding roots of a
univariate polynomial related to Q over Fqk . (Note that each polynomial in Fq [X] of degree at
most k−1 has a one to one correspondence with elements of Fqk – see e.g. Theorem 11.2.1.) The
list size bound follows from the fact that this new univariate polynomial had degree q s−1. Thus,
implementing the algorithm entails running a root finding algorithm over a big extension field,
which in practice has terrible performance.

Discussion. For constant ε, Theorem 14.3.8 answers Question 14.0.1 in the affirmative. How-
ever, from a practical point of view, there are three issues with the result: alphabet, list size and
run time. Below we tackle each of these issues.

Large Alphabet. Recall that one only needs an alphabet of size 2O(1/ε) to be able to list de-
code from 1−R −ε fraction of errors, which is independent of N . It turns out that combining
Theorem 14.3.8 along with code concatenation and expanders allows us to construct codes over
alphabets of size roughly 2O(1/ε4) [23]. (The idea of using expanders and code concatenation was
not new to [23]: the connection was exploited in earlier work by Guruswami and Indyk [22].)

The above however, does not answer the question of achieving list decoding capacity for
fixed q , say e.g. q = 2. We know that there exists binary code of rate R that are (H−1(1−R −
ε),O(1/ε))-list decodable codes (see Theorem 7.4.1). The best known explicit codes with effi-
cient list decoding algorithms are those achieved by concatenating folded Reed-Solomon codes
with suitable inner codes achieve the so called Blokh-Zyablov bound [25]. However, the tradeoff
is far from the list decoding capacity. As one sample point, consider the case when we want to
list decode from 1

2 −ε fraction of errors. Then the result of [25] gives codes of rate Θ(ε3) while
the codes on list decoding capacity has rate Ω(ε2). The following fundamental question is still
very much wide open:

Open Question 14.4.1. Do there exist explicit binary codes with rate R that can be list de-

coded from H−1(1−R −ε) fraction of errors with polynomial list decoding algorithms?

The above question is open even if we drop the requirement on efficient list decoding al-
gorithm or we only ask for a code that can list decode from 1/2−ε fraction of errors with rate
Ω(εa) for some a < 3. It is known (combinatorially) that concatenated codes can achieve the list
decoding capacity but the result is via a souped up random coding argument and does not give
much information about an efficient decoding algorithm [26].

199

List Size. It is natural to wonder if the bound on the list size in Lemma 14.3.4 above can be
improved as that would show that folded Reed-Solomon codes can be list decoded up to the list
decoding capacity but with a smaller output list size than Theorem 14.3.8. Guruswami showed
that in its full generality the bound cannot be improved [19]. In particular, he exhibits explicit
polynomials A0(X), . . . , As(X) such that there are at least q s−2 solutions for f (X) that satisfy
(14.8). However, these Ai (X)’s are not known to be the output for an actual interpolation in-
stance. In other words, the following question is still open:

Open Question 14.4.2. Can folded Reed-Solomon codes of rate R be list decoded from 1−
R−ε fraction of errors with list size f (1/ε)·N c for some increasing function f (·) and absolute

constant c?

Even the question above with N (1/ε)o(1)
is still open.

However, if one is willing to consider codes other than folded Reed-Solomon codes in or-
der to answer to achieve list decoding capacity with smaller list size (perhaps with one only
dependent on ε), then there is good news. Guruswami in the same paper that presented the
algorithm in this chapter also present a randomized construction of codes of rate R that are
(1−R −ε,O(1/ε2))-list decodable codes [19]. This is of course worse than what we know from
the probabilistic method. However, the good thing about the construction of Guruswami comes
with an O(N /ε)O(1/ε)-list decoding algorithm.

Next we briefly mention the key ingredient in the result above. To see the potential for im-
provement consider Corollary 14.3.6. The main observation is that all the potential solutions
lie in an affine subspace of dimension s − 1. The key idea in [19] was use the folded Reed-
Solomon encoding for a special subset of the message space F

k
q . Call a subspace S ⊆ F

k
q to be a

(q,k,ε,$,L)-subspace evasive subset if

1. |S|≥ qk(1−ε); and

2. For any (affine) subspace T ⊆ F
k
q of dimension $, we have |S ∩T |≤ L.

The code in [19], applies the folded Reed-Solomon encoding on a
(

q,k, s,O
(

s2))-subspace eva-
sive subset (such a subset can be shown to exist via the probabilistic method). The reason why
this sub-code of folded Reed-Solomon code works is as follows: Condition (1) ensures that the
new code has rate at least R(1−ε), where R is the rate of the original folded Reed-Solomon code
and condition (2) ensures that the number of output polynomial in the root finding step of the
algorithm we considered in the last section is at most L. (This is because by Corollary 14.3.6 the
output message space is an affine subspace of dimension s −1 in F

k
Q . However, in the new code

by condition 2, there can be at most O
(

s2) output solutions.)
The result above however, has two shortcomings: (i) the code is no longer explicit and (ii)

even though the worst case list size is O
(

1
ε2

)

, it was not know how to obtain this output without

listing all the q s−1 possibilities and pruning them against S. The latter meant that the decoding
runtime did not improve over the one achieved in Theorem 14.3.8.

200

Large Runtime. We finally address the question of the high run time of all the list decoding
algorithms so far. Dvir and Lovett [9], presented a construction of an explicit (q,k,ε, s, sO(s))-
subspace evasive subset S∗. More interestingly, given any affine subspace T of dimension at
most s, it can compute S∩T in time proportional to the output size. Thus, this result along with
the discussion above implies the following result:

Theorem 14.4.1. There exist strongly explicit codes of rate R that for large enough block length N

can be list decoded from 1−R−ε fraction of errors (for any small enough ε> 0) in time O

(
(

N
ε2

)2
)

+
(1
ε

)O(1/ε)
. The worst-case list size is

(1
ε

)O(1/ε)
and the alphabet size is

(
N
ε

)O(1/ε2)
.

The above answers Question 14.0.1 pretty satisfactorily. However, to obtain a completely
satisfactory answer one would have to solve the following open question:

Open Question 14.4.3. Are there explicit codes of rate R > 0 that are
(

1−R −ε, (1/ε)O(1))-list

decodable that can be list-decoded in time poly(N ,1/ε) over alphabet of size q ≤ pol y(n)?

The above question, without the requirement of explicitness, has been answered by Gu-
ruswami and Xing [29].

201

