
Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-
ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY
and by Madhu Sudan at MIT.

This version is dated March 30, 2012. For the latest version, please go to

http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under
CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2012.
This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444
Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/

Chapter 13

Cutting Data Down to Size: Hashing

In this chapter, we will study hashing, which is a method to compute a small digest of data
that can be used as a surrogate to later perform quick checks on the data. We begin with brief
descriptions of three practical applications where hashing is useful. We then formally state
the definition of hash functions that are needed in these applications (the so called “universal"
hash functions). Next, we will show how in some sense good hashing functions and good codes
are equivalent. Finally, we will see how hashing can solve a problem motivated by outsourced
storage in the “cloud."

13.1 Why Should You Care About Hashing?

Hashing is one of the most widely used objects in computer science. In this section, we outline
three practical applications that heavily use hashing. While describing the applications, we will
also highlight the properties of hash functions that these applications need.

Before we delve into the applications, let us first formally define a hash function.

Definition 13.1.1 (Hash Function). Given a domain D and a range Σ, (typically, with |Σ| < |D|),

a hash function is a map

h : D→Σ.

Of course, the definition above is too general and we will later specify properties that will
make the definition more interesting.

Integrity Checks on Routers. Routers on the Internet process a lot of packets in a very small
amount of time. Among other tasks, router has to perform an “integrity check" on the packet
to make sure that the packet it is processing is not corrupted. Since the packet has well defined
fields, the router could check if all the field have valid entries. However, it is possible that one of
the valid entry could be turned into another valid entry. However, the packet as a whole could
still be invalid.

If you have progressed so far in the book, you will recognize that the above is the error detec-
tion problem and we know how to do error detection (see e.g., Proposition 2.3.3). However, the

181

algorithms that we have seen in this book are too slow to implement in routers. Hence, Internet
protocols use a hash function on a domain D that encodes all the information that needs to go
into a packet. Thus, given an x ∈D, the packet is the pair (x,h(x)). The sender sends the packet
(x,h(x)) and the receiver gets (x′, y). In order to check if any errors occurred during transmis-
sion, the receiver checks if h(x′) = y . If the check fails, the receiver asks for a re-transmission
otherwise it assumes there were no errors during transmission. There are two requirements
from the hash function: (i) It should be super efficient to compute h(x) given x and (ii) h should
avoid “collisions," i.e. if x $= x′, then h(x) $= h(x′).1

Integrity Checks in Cloud Storage. Say, you (as a client) have data x ∈ D that you want to
outsource x to a cloud storage provider. Of course once you “ship" off x to the cloud, you do not
want to store it locally. However, you do not quite trust the cloud either. If you do not audit the
cloud storage server in any way, then nothing stops the storage provider from throwing away
x and send you some other data x′ when you ask for x. The problem of designing an auditing
protocol that can verify whether the server has the data x is called the data possession problem.

We consider two scenarios. In the first scenario, you access the data pretty frequently during
“normal" operation. In such cases, here is a simple check you can perform. When you ship off
x to the cloud, compute z = h(x) and store it. Later when you access x and the storage provider
send you x′, you compute h(x′) and check if it is the same as the stored h(x). This is exactly the
same solution as the one for packet verification mentioned above.

Now consider the scenario, where the cloud is used as an archival storage. In such a case,
one needs an “auditing" process to ensure that the server is indeed storing x (or is storing some
massaged version from which it can compute x– e.g. the storage provider can compress x). One
can always ask the storage provider to send back x and then use the scheme above. However,
if x is meant to be archived in the cloud, it would be better to resolve the following question:

Question 13.1.1. Is there an auditing protocol with small client-server communicationa,

which if the server passes then the client should be able to certain (with some high confidence)

that the server is indeed storing x?

aIn particular, we rule out solutions where the server sends x to the client.

We will see later how this problem can be solved using hashing.

Fast Table Lookup. One of the most common operations on databases is the following. As-
sume there is a table with entries from D. One would like to decide on a data structure to store

1Note that in the above example, one could have x $= x′ and h(x) $= h(x′) but it is still possible that y = h(x′) and
hence the corrupted packet (x′, y) would pass the check above. Our understanding is that such occurrences are
rare.

182

the table so that later on given an element x ∈ D, one would quickly like to decide whether x is
in the table or now.

Let us formalize the problem a bit: assume that the table needs to store N values a1, . . . , aN ∈
D. Then later given x ∈ D one needs to decide if x = ai for some i . Here is one simple solution:
sort the n elements in an array T and given x ∈ D use binary search to check if x is in T or not.
This solution uses Θ(N) amounts of storage and searching for x takes Θ(log N) time. Further,
the pre-processing time (i.e. time taken to build the array T) is Θ(N log N). The space usage of
this scheme is of course optimal but one would like the lookup to be faster: ideally we should
be able to perform the search in O(1) time. Also it would be nice to get the pre-processing time
closer to the optimal O(N). Further, this scheme is very bad for dynamic data: inserting an item
to and deleting an item from T takes Θ(N) time in the worst-case.

Now consider the following solution: build a boolean array B with one entry for each z ∈D

and set B [ai] = 1 for every i ∈ [N] (and every other entry is 0).2 Then searching for x is easy: just
lookup B [x] and check if B [x] $= 0. Further, this data structure can easily handle addition and
deletion of elements (by incrementing and decrementing the corresponding entry of B respec-
tively). However, the amount of storage and pre-processing time are both Θ (|D|), which can be
much much bigger than the optimal O(N). This is definitely true for tables stored in real life
databases. This leads to the following question:

Question 13.1.2. Is there a data structure that supports searching, insertion and deletion in

O(1) time but only needs O(N) space and O(N) pre-processing time?

We will see later how to solve this problem with hashing.

13.2 Avoiding Hash Collisions

One of the properties that we needed in the applications outlined in the previous section was
that the hash function h : D → Σ should avoid collisions. That is, given x $= y ∈ D, we want
h(x) $= h(y). However, since we have assumed that |Σ| < |D|, this is clearly impossible. A simple
counting argument shows that there will exist an x $= y ∈D such that h(x) = h(y). There are two
ways to overcome this hurdle.

The first is to define a cryptographic collision resistant hash function h, i.e. even though
there exists collisions for the hash function h, it is computationally hard for an adversary to
compute x $= y such that h(x) = h(y).3 This approach is out of the scope of this book and hence,
we will not pursue this solution.

2If one wants to handle duplicates, one could store the number of occurrences of y in B [y].
3This is a very informal definition. Typically, an adversary is modeled as a randomized polynomial time algo-

rithm and there are different variants on whether the adversary is given h(x) or x (or both). Also there are variants
where one assumes a distribution on x. Finally, there are no unconditionally collision resistant hash function but
there exists provably collision resistant hash function under standard cryptographic assumptions: e.g. factoring is
hard.

183

The second workaround is to define a family of hash functions and then argue that the prob-
ability of collision is small for a hash function chosen randomly from the family. More formally,
we define a hash family:

Definition 13.2.1 (Hash Family). Given D,Σ and an integer m ≥ 1, a hash family H is a set

{h1, . . . ,hm} such that for each i ∈ [m],

hi : D→Σ.

Next we define the notion of (almost) universal hash function (family).

Definition 13.2.2 (Almost Universal Hash Family). A hash family H = {h1, . . . ,hm} defined over

the domain D and range Σ is said to be ε-almost universal hash function (family) for some 0 <
ε≤ 1 if for every x $= y ∈D,

Pr
i

[

hi (x) = hi (y)
]

≤ ε,

where in the above i is chosen uniformly at random from [m].

We will show in the next section that ε-almost universal hash functions are equivalent to
codes with (large enough) distance. In the rest of the section, we outline how these hash families
provides satisfactory solutions to the problems considered in the previous section.

Integrity Checks. For the integrity check problem, one pick random i ∈ [m] and chooses hi ∈
H , where H is an ε-almost universal hash function. Thus, for any x $= y , we’re guaranteed
with probability at least 1−ε (over the random choice of i) that hi (x) $= hi (y). Thus, this gives a
randomized solution to the integrity checking problem in routers and cloud storage (where we
consider the first scenario in which the cloud is asked to return the original data in its entirety).

It is not clear whether such hash functions can present a protocol that answers Question 13.1.1.
There is a very natural protocol to consider though. When the client ships off data x to the cloud,
it picks a random hash function hi ∈ H , where again H is an ε-universal hash function, and
computes hi (x). Then it stores hi (x) and ships off x to the cloud. Later on, when the client wants
to audit, it asks the cloud to send hi (x) back to it. Then if the cloud returns with z, the client
checks if z = hi (x). If so, it assumes that the storage provider is indeed storing x and otherwise
it concludes that the cloud is not storing x.

Note that it is crucial that the hash function be chosen randomly: if the client picks a de-
terministic hash function h, then the cloud can store h(x) and throw away x because it knows
that the client is only going to ask for h(x). Intuitively, the above protocol might work since the
random index i ∈ [m] is not known to the cloud till the client asks for hi (x), it seems “unlikely"
that the cloud can compute hi (x) without storing x. We will see later how the coding view of
almost universal hash functions can make this intuition rigorous.

Fast Table Lookup. We now return to Question 13.1.2. The basic idea is simple: we will mod-
ify the earlier solution that maintained an entry for each element in the domain D. The new
solution will be to keep an entry for all possible hash values (instead of all entries in D).

184

More formally, let H = {h1, . . . ,hm} be an ε-almost hash family with domain D and range
Σ. Next we build an array of link list with one entry in the array for each value v ∈ Σ. We pick a
random hash function hi ∈H . Then for each a j (j ∈ [N]) we add it to the link list corresponding
to hi (a j). Now to determine whether x = a j for some j , we scan the link list corresponding to
hi (x) and check if x is in the list or not. Before we analyze the space and time complexity of
this data structure, we point out that insertion and deletion are fairly easy. For inserting an
element x, we compute hi (x) and add x to the link list corresponding to hi (x). For deletion, we
first perform the search algorithm and then remove x from the list corresponding to hi (x), if it
is present. It is easy to check that the algorithms are correct.

Next we analyze the space complexity. Note that for a table with N elements, we will use
up O(N) space in the linked lists and the array is of size O(|Σ|). That is, the total space usage is
O(N +|Σ|). Thus, if we can pick |Σ| = O(N), then we would match the optimal O(N) bound for
space.

Now we analyze the time complexity of the various operations. We first note that insertion is
O(1) time (assuming computing the hash value takes O(1) time). Note that this also implies that
the pre-processing time is O(N + |Σ|), which matches the optimal O(N) bound for |Σ| ≤ O(N).
Second, for deletion, the time taken after performing the search algorithm is O(1), assuming
the lists as stored as doubly linked lists. (Recall that deleting an item from a doubly linked list if
one has a pointer to the entry can be done in O(1) time.)

Finally, we consider the search algorithm. Again assuming that computing a hash value
takes O(1) time, the time complexity of the algorithm to search for x is dominated by size of the
list corresponding to hi (x). In other words, the time complexity is determined by the number
of a j that collide with x, i.e., hi (x) = hi (a j). We bound this size by the following simple observa-
tion.

Claim 13.2.3. Let H = {h1, . . . ,hm} with domain D and range Σ be an ε-almost universal hash

family. Then the following is true for any (distinct) x, a1, a2, . . . , aN ∈D:

Ei

[

|{a j |hi (x) = hi (a j)}|
]

≤ ε ·N ,

where the expectation is taken over a uniformly random choice of i ∈ [m].

Proof. Fix a j ∈ [N]. Then by definition of an ε-almost universal hash family, we have that

Pr
i

[hi (x) = hi (a j)] ≤ ε.

Note that we want to bound E

[
∑N

j=1 1hi (a j)=hi (x)

]

. The probability bound above along with the

linearity of expectation (Proposition 3.1.4) and Lemma 3.1.3 completes the proof.

The above discussion then implies the following:

Proposition 13.2.4. Given an O
(

1
N

)

-almost universal hash family with domain D and range Σ

such that |Σ| =O(N), there exists a randomized data structure that given N elements a1, . . . , aN ∈
D, supports searching, insertion and deletion in expected O(1) time while using O(N) space in the

worst-case.

185

Thus, Proposition 13.2.4 answers Question 13.1.2 in the affirmative if we can answer the
following question in the affirmative:

Question 13.2.1. Given a domain D and an integer N ≥ 1, does there exist an O
(

1
N

)

-almost

universal hash function with domain D and a range Σ such that |Σ| =O(N)?

We will answer the question above (spoiler alert!) in the affirmative in the next section.

13.3 Almost Universal Hash Function Families and Codes

In this section, we will present a very strong connection between almost universal hash families
and codes with good distance: in fact, we will show that they are in fact equivalent.

We first begin by noting that any hash family has a very natural code associated with it and
that every code has a very natural hash family associated with it.

Definition 13.3.1. Given a hash family H = {h1, . . . ,hn} where for each i ∈ [n], hi : D→ Σ, con-

sider the following associated code

CH : D→Σ
n ,

where for any x ∈D, we have

CH (x) = (h1(x),h2(x), . . . ,hn(x)) .

The connection also goes the other way. That is, given an (n,k)Σ code C , we call the associated

hash family HC = {h1, . . . ,hn), where for every i ∈ [n],

hi : Σk →Σ

such that for every x ∈Σ
k and i ∈ [n],

hi (x) =C (x)i .

Next we show that an ε-almost universal hash family is equivalent to a code with good dis-
tance.

Proposition 13.3.2. Let H = {h1, . . . ,hn} be an ε-almost universal hash function, then the code

CH has distance at least (1− ε)n. On the other hand if C is an (n,k,δn)-code, then HC is a

(1−δ)-almost universal hash function.

Proof. We will only prove the first claim. The proof of the second claim is essentially identical
and is left as an exercise.

Let H = {h1, . . . ,hn} be an ε-almost universal hash function. Now fix arbitrary x $= y ∈ D.
Then by definition of CH , we have

{i |hi (x) = hi (y)} = {i |CH (x)i =CH (y)i }.

186

This implies that

Pr
i

[

hi (x) = hi (y)
]

=
|{i |hi (x) = hi (y)}|

n
=

n −∆(CH (x),CH (y))

n
= 1−

∆(CH (x),CH (y))

n
,

where the second equality follows from the definition of the Hamming distance. By the defi-
nition of ε-almost universal hash family the above probability is upper bounded by ε, which
implies that

∆(CH (x),CH (y)) ≥ n(1−ε).

Since the choice of x and y was arbitrary, this implies that CH has distance at least n(1−ε) as
desired.

13.3.1 The Polynomial Hash Function

We now consider the hash family corresponding to a Reed-Solomon code. In particular, let C

be a [q,k, q −k +1]q Reed-Solomon code. By Proposition 13.3.2, the hash family HC is an k−1
q -

almost universal hash family– this hash family in the literature is called the polynomial hash.
Thus, if we pick q to be the smallest power of 2 larger than N and pick k =O(1), then this leads
to an O(1/N)-universal hash family that satisfies all the required properties in Question 13.2.1.

Note that the above implies that |D| = NO(1). One might wonder if we can get an O(1/N)-
almost universal hash family with the domain size being Nω(1). We leave the resolution of this
question as an exercise.

13.4 Data Possession Problem

In this section, we return to Question 13.1.1. Next we formalize the protocol for the data pos-
session problem that we outlined in Section 13.2. Algorithm 7 presents the pre-processing step.

Algorithm 7 Pre-Processing for Data Possession Verification

INPUT: Data x ∈D, hash family H = {h1, . . . ,hm} over domain D

1: Client computes an index i for x.
2: Client picks a random j ∈ [m].
3: Client computes z ← h j (x) and stores (i , j , z).
4: Client sends x to the server.

Algorithm 8 formally states the verification protocol. Note that if the server has stored x

(or is able to re-compute x from what it had stored), then it can pass the protocol by returning
a ← h j (x). Thus, for the remainder of the section, we will consider the case when the server
tries to cheat. We will show that if the server is able to pass the protocol in Algorithm 8 with
high enough probability, then the server indeed has stored x.

Before we formally prove the result, we state our assumptions on what the server can and
cannot do. We assume that the server follows the following general protocol. First, when the

187

Algorithm 8 Verification for Data Possession Verification

INPUT: Index i of data x ∈D

OUTPUT: 1 if Server has x and 0 otherwise

1: Client sends a challenge (i , j) to the server.
2: Client receives an answer a.
3: IF a = z THEN

4: RETURN 1
5: ELSE

6: RETURN 0

server receives x, it does performs some computation (that terminates) on x to produce y and
then it stores y. (E.g., the server could store y = x or y could be a compressed version of x.)
Then when it receives the challenge (i , j) for x, it uses another algorithm A and returns the
answers a ←A (y, j). We assume that A always terminates on any input.4 Note that the server
is allowed to use arbitrary (but finite) amount of time to compute its answer. Next, we will prove
that under these assumptions, the server cannot cheat with too high a probability.

Theorem 13.4.1. Assume that the hash family H is an ε-almost universal hash family. Then if

the server passes the protocol in Algorithm 8 with probability > 1
2 +

ε
2 , then the server has enough

information to recreate x.

Proof. To prove the claim, we present an algorithm that can compute x from y. (Note that we do
not need this algorithm to be efficient: it just needs to terminate with x.) In particular, consider
Algorithm 9.

Algorithm 9 Decompression Algorithm

INPUT: A ,y

OUTPUT: x′

1: z ←
(

A (y, j)
)

j∈[m].

2: Run the MLD algorithm (Algorithm 1) for CH on z and let CH (x′) be its output.
3: RETURN x′

To complete the proof, we will show that x′ = x. Towards this end we claim that∆(z,CH (x)) <
m
2 · (1−ε). Assuming this is true, we complete the proof. Note that Proposition 13.3.2 implies

that CH has distance at least m(1−ε). Thus, Proposition 1.4.3 (in particular, its proof) implies
that Algorithm 1 will return CH (x) and thus, x′ = x, as desired.

Finally, we argue that ∆(z,CH (x)) < m(1−ε)/2. To see this note that if the server passes the

protocol in Algorithm 8 (i.e. the client outputs 1), then it has to be the case that z j
def= A (y, j) =

4We have stated the algorithm to be independent of y and j but that need not be the case. However later in the
section, we will need the assumption that A is independent of y and j , so we will keep it that way.

188

h j (x). Recall that by definition of CH , h j (x) = CH (x) j and that the server passes the proto-
col with probability > 1/2+ ε/2. Since j is chosen uniformly from [m], this implies that for
> m(1/2+ε/2) positions j , z j =CH (x) j , which then implies the claim.

13.4.1 Driving Down the Cheating Probability

One of the unsatisfying aspects of Theorem 13.4.1 is that the probability of catching a “cheating"
server is strictly less than 50%.5 It is of course desirable to drive this up as close to 100% as possi-
ble. One way to obtain this would be to “repeat" the protocol: i.e. the client can choose multiple
random hashes and store the corresponding values (in Algorithm 7) and (in Algorithm 8) asks
the server to send back all the hash values and accepts if and only if all the returned answers
match with the stored hash valiues. This however, comes at a cost: the client has to store more
hash values (and also the communication cost betwen the client and the server goes up accord-
ingly.)

Next we argue using list decoding that the protocol in Algorithm 7 and 8 as is gives a more
powerful guarantee than the one in Theorem 13.4.1. To see why list decoding might buy us
something, let us look back at Algorithm 9. In particular, consider Step 2: since we run MLD,
we can only guarantee unique decoding up to half the (relative) distance of CH . This in turn
leads to the bound of 1/2+ε/2 in Theorem 13.4.1. We have seen that list decoding allows us to
beyond half the distance number of errors. So maybe, running a list decoding algorithm instead
of MLD in Step 2 of Algorithms 9 would help us get better results. There are two potential issues
that we’ll need to tackle:

• We will need a general bound that shows that list decoding is possible close to 100% for
any CH for an ε-almost universal hash family; and

• Even if the above is possible, what will we do when a list decoding algorithm returns a list

of possible data?

We will get around the first concern by using the Johnson bound 7.3.1. To get around the second
issue we will indirectly use “side information" (like we mentioned in Section 7.2). For the latter,
we will need the notion of Kolmogorov complexity, which captures the amount of information
content in any given string. For our purposes, the following informal description is enough:

Definition 13.4.2. Given a string x, its Kolmogorov complexity, denoted by K (x) is the minimum

of |y| + |D|, where D is a decompression algorithm that on input y outputs x (where |x| and |D|
are the length of x and (a description of) D in bits).

Informally, K (x) is the amount of information that can be obtained algorithmically from x.
Kolmogorov complexity is a fascinating topic that it outside the scope of this book. Here we will
only need to use the definition of K (x). We are now ready to prove the following list decoding
counterpart of Theorem 13.4.1:

5Note that Theorem 13.4.1 states that a server that cannot recreate x can pass the test with probablity at most
1/2+ε/2. In other words, the probability that such a server is caught is at most 1/2−ε/2 < 1/2.

189

Theorem 13.4.3. Assume that the hash family H is an ε-almost universal hash family. Then if

the server passes the protocol in Algorithm 8 with probability >
)
ε, then the amount of informa-

tion server has stored for x is at least K (x)−O(log |x|).

We note that the above is not a strict generalization of Theorem 13.4.1, as even though
probability of catching a cheating server has gone up our guarantee is weaker. Unlike Theo-
rem 13.4.1, where we can guarantee that the server can re-create x, here we can only guarantee
“storage enforceability"– i.e. we can only force a server to store close to K (x) amounts of mem-
ory.

Proof of Theorem 13.4.3. Here is the main idea of the proof. We first assume for the sake of
contradiction that |y| <K (x)−O(log(|x|)). Then using we construct a decompression algorithm
D that on given input y and O(log(|x|)) extra information (or “advice"), outputs x. Then we will
show this overall contradicts the definition of K (x) (as this gives an overall smaller description
of x).

Before we state the decompression algorithm, we recall some facts. First note that CH by
Proposition 13.3.2 is a q-ary code (with |Σ| = q) with distance m(1−ε). Further, by the Johnson
bound (Theorem 7.3.1), CH is a (1−

)
ε,L)-list decodable, where

L ≤ qm2. (13.1)

Next, in Algorithm 10, we present a decompression algorithm that can compute x from y

and an advice string a ∈ [L]. (As before, we do not need this algorithm to be efficient: it just
needs to terminate with x.)

Algorithm 10 Decompression Algorithm Using List Decoding

INPUT: A ,y, a

OUTPUT: x

1: z ←
(

A (y, j)
)

j∈[m].
2: L ←*.
3: FOR x′ ∈D DO

4: IF ∆(CH (x′),z) ≤ (1−
)
ε)m THEN

5: Add x′ to L

6: RETURN The ath element in L

To complete the proof, we claim that there exists a choice of a ∈ [L] such that Algorithm 10
outputs x. Note that this implies that (y, a) along with Algorithm 10 gives a complete description
of x. Now note that Algorithm 10 can be described in O(1) bits. This implies that the size of this
description is |y|+ logL +O(1), which by Definition 13.4.2 has to be at least K (x). This implies
that

|y|≥K (x)− |a|−O(1) =K (x)− logL−O(1) ≥K (x)−O(log |x|),

where the last inequality follows from (13.1).

190

Next, we argue the existence of an appropriate a ∈ [L]. Towards this end we claim that
∆(z,CH (x)) < m(1−

)
ε). Note that this implies that x ∈ L . Since |L | ≤ L, then we can just

assign a to be the index of x in L . Finally, we argue that ∆(z,CH (x)) < m(1−
)
ε). To see this

note that if the server passes the protocol in Algorithm 8 (i.e. the client outputs 1), then it has to

be the case that z j
def= A (y, j) = h j (x). Recall that by definition of CH , h j (x) = CH (x) j and that

the server passes the protocol with probability >
)
ε. Since j is chosen uniformly from [m], this

implies that for > m
)
ε positions j , z j =CH (x) j , which then implies the claim.

13.5 Bibliographic Notes

Universal hash functions were defined in the seminal paper of Carter and Wegman [3]. Almost
universal hash function family was defined by Stinson [48].

Kolmogorov complexity was defined by Kolmogorov [32]. For a thorough treatment see the
textbook by Li and Vitányi [34].

191

