
Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-
ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY
and by Madhu Sudan at MIT.

This version is dated February 21, 2017. For the latest version, please go to

http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under
CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2014.
This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444
Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 2

A Look at Some Nicely Behaved Codes:

Linear Codes

Let us now pause for a bit and think about how we can represent a code. In general, a code
C : [q]k −→ [q]n can be stored using nqk symbols from [q] (n symbols for each of the qk code-
words) or nqk log q bits. For constant rate codes, this is exponential space, which is prohibitive
even for modest values of k like k = 100. A natural question is whether we can do better. Intu-
itively, the code must have some extra structure that would facilitate a succinct representation
of the code. We will now look at a class of codes called linear codes that have more structure
than general codes which leads to some other nice properties. We have already seen binary lin-
ear codes in Section 1.5, that is, C ⊆ {0,1}n is linear code if for all c1,c2 ∈C , c1+c2 ∈C , where the
“+" denotes bit-wise EXOR.

Definition 2.0.1 (Linear Codes). Let q be a prime power (i.e. q = ps for some prime p and
integer s ≥ 1). C ⊆ {0,1, ..., q −1}n is a linear code if it is a linear subspace of {0,1, ..., q −1}n . If C

has dimension k and distance d then it will be referred to as an [n,k,d]q or just an [n,k]q code.

Of course the above definition is not complete because we have not defined a linear sub-
space yet. We do that next.

2.1 Finite Fields

To define linear subspaces, we will need to work with (finite) fields. At a high level we need
finite fields as when we talk about codes, we deal with finite symbols/numbers and we want to
endow these symbols with the same math that makes arithmetic over reals work. Finite fields
accomplish this precise task. We begin with a quick overview of fields.

Informally speaking, a field is a set of elements on which one can do addition, subtraction,
multiplication and division and still stay in the set. More formally,

Definition 2.1.1. A field F is given by a triple (S,+, ·), where S is the set of elements containing
special elements 0 and 1 and +, · are functions F×F→ F with the following properties:

41

• Closure: For every a,b ∈ S, we have both a +b ∈ S and a ·b ∈ S.

• Associativity: + and · are associative, that is, for every a,b,c ∈ S, a+(b+c) = (a+b)+c and
a · (b · c) = (a ·b) · c.

• Commutativity: + and · are commutative, that is, for every a,b ∈ S, a + b = b + a and
a ·b = b ·a.

• Distributivity: · distributes over +, that is for every a,b,c ∈ S, a · (b + c) = a ·b +a · c.

• Identities: For every a ∈ S, a +0 = a and a ·1 = a.

• Inverses: For every a ∈ S, there exists its unique additive inverse −a such that a + (−a) =
0. Also for every a ∈ S \ {0}, there exists its unique multiplicative inverse a−1 such that
a ·a−1 = 1.

With the usual semantics for + and ·, R (set of real number) is a field but Z (set of integers)
is not a field as division of two integers can give rise to a rational number (the set of rational
numbers itself is a field though– see Exercise 2.1). In this course, we will exclusively deal with
finite fields. As the name suggests these are fields with a finite size set of elements. (We will
overload notation and denote the size of a field |F| = |S|.) The following is a well known result.

Theorem 2.1.1 (Size of Finite Fields). The size of any finite field is ps for prime p and integer

s ≥ 1.

One example of finite fields that we have seen is the field of two elements {0,1}, which we
will denote by F2 (we have seen this field in the context of binary linear codes). For F2, addition
is the XOR operation, while multiplication is the AND operation. The additive inverse of an
element in F2 is the number itself while the multiplicative inverse of 1 is 1 itself.

Let p be a prime number. Then the integers modulo p form a field, denoted by Fp (and also
by Zp), where the addition and multiplication are carried out mod p. For example, consider
F7, where the elements are {0,1,2,3,4,5,6}. So we have 4+ 3 mod 7 = 0 and 4 · 4 mod 7 = 2.
Further, the additive inverse of 4 is 3 as 3+4 mod 7 = 0 and the multiplicative inverse of 4 is 2
as 4 ·2 mod 7 = 1.

More formally, we prove the following result.

Lemma 2.1.2. Let p be a prime. Then Fp = ({0,1, . . . , p −1},+p , ·p) is a field, where +p and ·p are

addition and multiplication mod p.

Proof. The properties of associativity, commutativity, distributivity and identities hold for in-
tegers and hence, they hold for Fp . The closure property follows since both the “addition" and
“multiplication" are done mod p, which implies that for any a,b ∈ {0, . . . , p −1}, a +p b, a ·p b ∈
{0, . . . , p−1}. Thus, to complete the proof, we need to prove the existence of unique additive and
multiplicative inverses.

Fix an arbitrary a ∈ {0, . . . , p −1}. Then we claim that its additive inverse is p −a mod p. It is
easy to check that a +p −a = 0 mod p. Next we argue that this is the unique additive inverse.

42

To see this note that the sequence a, a + 1, a + 2, . . . , a + p − 1 are p consecutive numbers and
thus, exactly one of them is a multiple of p, which happens for b = p −a mod p, as desired.

Now fix an a ∈ {1, . . . , p −1}. Next we argue for the existence of a unique multiplicative uni-
verse a−1. Consider the set of numbers {a ·p b}b∈{1,...,p−1}. We claim that all these numbers are
unique. To see this, note that if this is not the case, then there exist b1 ̸= b2 ∈ {0,1, . . . , p −1} such
that a ·b1 = a ·b2 mod p, which in turn implies that a · (b1−b2) = 0 mod p. Since a and b1−b2

are non-zero numbers, this implies that p divides a · (b1 −b2). Further, since a and |b1 −b2| are
both at most p −1, this implies that factors of a and (b1 −b2) mod p when multiplied together
results in p, which is a contradiction since p is prime. Thus, this implies that there exists a
unique element b such that a ·b = 1 mod p and thus, b is the required a−1.

One might think that there could be different fields with the same number of elements.
However, this is not the case:

Theorem 2.1.3. For every prime power q there is a unique finite field with q elements (up to

isomorphism1).

Thus, we are justified in just using Fq to denote a finite field on q elements.

2.2 Linear Subspaces

We are finally ready to define the notion of linear subspace.

Definition 2.2.1 (Linear Subspace). S ⊆ Fq
n is a linear subspace if the following properties hold:

1. For every x,y ∈ S, x+y ∈ S, where the addition is vector addition over Fq (that is, do addi-
tion component wise over Fq).

2. For every a ∈ Fq and x ∈ S, a ·x ∈ S, where the multiplication is over Fq .

Here is a (trivial) example of a linear subspace of F3
5:

S1 = {(0,0,0), (1,1,1), (2,2,2), (3,3,3), (4,4,4)}. (2.1)

Note that for example (1,1,1)+ (3,3,3) = (4,4,4) ∈ S1 and 2 · (4,4,4) = (3,3,3) ∈ S1 as required
by the definition. Here is another somewhat less trivial example of a linear subspace over F3

3:

S2 = {(0,0,0), (1,0,1), (2,0,2), (0,1,1), (0,2,2), (1,1,2), (1,2,0), (2,1,0), (2,2,1). (2.2)

Note that (1,0,1)+ (0,2,2) = (1,2,0) ∈ S2 and 2 · (2,0,2) = (1,0,1) ∈ S2 as required.

Remark 2.2.1. Note that the second property implies that 0 is contained in every linear sub-
space. Further for any subspace over F2, the second property is redundant: see Exercise 2.4.

Before we state some properties of linear subspaces, we state some relevant definitions.

1An isomorphism φ : S → S′ is a map (such that F= (S,+, ·) and F′ = (S′,⊕,◦) are fields) where for every a1, a2 ∈ S,
we have φ(a1 +a2) =φ(a1)⊕φ(a2) and φ(a1 ·a2) =φ(a1)◦φ(a2).

43

Definition 2.2.2 (Span). Given a set B = {v1, . . . ,vℓ}. The span of B is the set of vectors
{

ℓ∑

i=1
ai ·vi |ai ∈ Fq for every i ∈ [ℓ]

}

.

Definition 2.2.3 (Linear independence of vectors). We say that v1,v2, . . .vk are linearly indepen-

dent if for every 1 ≤ i ≤ k and for every k −1-tuple (a1, a2, . . . , ai−1, ai+1, . . . , ak) ∈ Fk−1
q ,

vi ̸= a1v1 + . . .+ai−1vi−1 +ai+1vi+1 + . . .+ak vk .

In other words, vi is not in the span of the set {v1, . . . ,vi−1,vi+1, . . . ,vn}.

For example the vectors (1,0,1), (1,1,1) ∈ S2 are linearly independent.

Definition 2.2.4 (Rank of a matrix). The rank of matrix in Fk×k
q is the maximum number of

linearly independent rows (or columns). A matrix in Fk×n
q with rank min(k,n) is said to have full

rank.

One can define the row (column) rank of a matrix as the maximum number of linearly in-
dependent rows (columns). However, it is a well-known theorem that the row rank of a matrix
is the same as its column rank. For example, the matrix below over F3 has full rank (see Exer-
cise 2.5):

G2 =
(

1 0 1
0 1 1

)

. (2.3)

Any linear subspace satisfies the following properties (the full proof can be found in any
standard linear algebra textbook).

Theorem 2.2.1. If S ⊆ Fq
n is a linear subspace then

1. |S| = qk for some k ≥ 0. The parameter k is called the dimension of S.

2. There exists v1, ...,vk ∈ S called basis elements (which need not be unique) such that every

x ∈ S can be expressed as x = a1v1 + a2v2 + ...+ anvn where ai ∈ Fq for 1 ≤ i ≤ k. In other

words, there exists a full rank k×n matrix G (also known as a generator matrix) with entries

from Fq such that every x ∈ S, x = (a1, a2, ...ak) ·G where

G =

⎛

⎜
⎜
⎜
⎝

←− v1 −→
←− v2 −→

...

←− vk −→

⎞

⎟
⎟
⎟
⎠

.

3. There exists a full rank (n − k)×n matrix H (called a parity check matrix) such that for

every x ∈ S, HxT = 0.

4. G and H are orthogonal, that is, G ·H T = 0.

44

Proof Sketch.

Property 1. We begin with the proof of the first property. For the sake of contradiction, let
us assume that qk < |S| < qk+1, for some k ≥ 0. Iteratively, we will construct a set of linearly
independent vectors B ⊆ S such that |B |≥ k +1. Note that by the definition of a linear subspace
the span of B should be contained in S. However, this is a contradiction as the size of the span
of B is at least2 qk+1 > |S|.

To complete the proof, we show how to construct the set B in a greedy fashion. In the first
step pick v1 to be any non-zero vector in S and set B ← {v1} (we can find such a vector as |S| >
qk ≥ 1). Now say after the step t (for some t ≤ k), |B | = t . Now the size of the span of the current
B is q t ≤ qk < |S|. Thus there exists a vector vt+1 ∈ S \ B that is linearly independent of vectors
in B . Set B ← B ∪ {vt+1}. Thus, we can continue building B till |B | = k +1, as desired.

Property 2. We first note that we can pick B = {v1, . . . ,vk } to be any set of k linearly indepen-
dent vectors– this just follows from the argument above for Property 1.1. This is because the
span of B is contained in S. However, since |S| = qk and the span of B has qk vectors, the two
have to be the same.

Property 3. Property 3 above follows from another fact that every linear subspace S has a null
space N ⊆ Fn

q such that for every x ∈ S and y ∈ N , 〈x,y〉 = 0. Further, it is known that N itself is
a linear subspace of dimension n −k. (The claim that N is also a linear subspace follows from
the following two facts: for every x,y,z ∈ Fn

q , (i) 〈x,y+ z〉 = 〈x,y〉+ 〈x,z〉 and (ii) for any a ∈ Fq ,
〈x, ay〉= a ·〈x,y〉.) In other words, there exists a generator matrix H for it. This matrix H is called
the parity check matrix of S.

Property 4. See Exercise 2.8.

As examples, the linear subspace S1 in (2.1) has as one of its generator matrices

G1 =
(

1 1 1
)

and as one of its parity check matrices

H1 =
(

1 2 2
2 2 1

)

.

Further, the linear subspace S2 in (2.2) has G2 as one of its generator matrices and has the fol-
lowing as one of its parity check matrices

H2 =
(

1 1 2
)

.

Finally, we state another property of linear subspaces that is useful.

2See Exercise 2.7.

45

Lemma 2.2.2. Given matrix G of dimension k ×n that is a generator matrix of subspace S1 and

matrix H of dimension (n−k)×n that is a parity check matrix of subspace S2 such that G H T = 0,

then S1 = S2.

Proof. We first prove that S1 ⊆ S2. Given any c ∈ S1, there exists x ∈ Fk
q such that c = xG . Then,

cH T = xG H T = 0,

which implies that c ∈ S2, as desired.
To complete the proof note that as H has full rank, its null space (or S2) has dimension

n − (n −k) = k (this follows from a well known fact from linear algebra). Now as G has full rank,
the dimension of S1 is also k. Thus, as S1 ⊆ S2, it has to be the case that S1 = S2.3

2.3 Properties of Linear Codes

The above theorem gives two alternate characterizations of an [n,k]q linear code C :

• C is generated by its k ×n generator matrix G. As an example that we have already seen,
the [7,4,3]2 Hamming code has the following generator matrix:

G =

⎛

⎜
⎜
⎜
⎝

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞

⎟
⎟
⎟
⎠

• C is also characterized by an (n−k)×n parity check matrix H . We claim that the following
matrix is a parity check matrix of the [7,4,3]2 Hamming code:

H =

⎛

⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠

Indeed, it can be easily verified that G ·H T = 0. Then Lemma 2.2.2 proves that H is indeed
a parity check matrix of the [7,4,3]2 Hamming code.

We now look at some consequences of the above characterizations of an [n,k]q linear code
C . We started this chapter with a quest for succinct representation of a code. Note that both the
generator matrix and the parity check matrix can be represented using O(n2) symbols from Fq

(which is much smaller than the exponential representation of a general code). More precisely
(see Exercise 2.10),

Proposition 2.3.1. Any [n,k]q linear code can be represented with min(nk,n(n − k)) symbols

from Fq .

3If not, S1 ⊂ S2 which implies that that |S2|≥ |S1|+1. The latter is not possible if both S1 and S2 have the same
dimension.

46

There is an encoding algorithm for C that runs in O(n2) (in particular O(kn)) time– given a
message m ∈ Fk

q , the corresponding codeword C (m) = m ·G , where G is the generator matrix of
C . (See Exercise 2.11.)

Proposition 2.3.2. For any [n,k]q linear code, given its generator matrix, encoding can be done

with O(nk) operations over Fq .

There is an error-detecting algorithm for C that runs in O(n2). This is a big improvement
over the naive brute force exponential time algorithm (that goes through all possible codewords
c ∈C and checks if y = c). (See Exercise 2.12.)

Proposition 2.3.3. For any [n,k]q linear code, given its parity check matrix, error detection can

be performed in O(n(n −k)) operations over Fq .

Next, we look at some alternate characterizations of the distance of a linear code.

2.3.1 On the Distance of a Linear Code

We start with the following property, which we have seen for the special case of binary linear
codes (Proposition 1.5.3).

Proposition 2.3.4. For a [n,k,d]q code C ,

d = min
c∈C ,
c ̸=0

w t (c).

Proof. To show that d is the same as the minimum weight we show that d is no more than the
minimum weight and d is no less than the minimum weight.

First, we show that d is no more than the minimum weight. We can see this by considering
∆(0,c′) where c′ is the non-zero codeword in C with minimum weight; its distance from 0 is
equal to its weight. Thus, we have d ≤ w t (c′), as desired.

Now, to show that d is no less than the minimum weight, consider c1 ̸= c2 ∈ C such that
∆(c1,c2) = d . Note that c1 − c2 ∈ C (this is because −c2 = −1 · c2 ∈ C , where −1 is the additive
inverse of 1 in Fq and c1 −c2 = c1 + (−c2), which by the definition of linear codes is in C). Now
note that w t (c1 −c2) = ∆(c1,c2) = d , since the non-zero symbols in c1 −c2 occur exactly in the
positions where the two codewords differ. Further, since c1 ̸= c2, c1 −c2 ̸= 0, which implies that
the minimum Hamming weight of any non-zero codeword in C is at most d .

Next, we look at another property implied by the parity check matrix of a linear code.

Proposition 2.3.5. For any [n,k,d]q code C with parity check matrix H, d is the minimum num-

ber of linearly dependent columns in H.

Proof. By Proposition 2.3.4, we need to show that the minimum weight of a non-zero codeword
in C is the minimum number of linearly dependent columns. Let t be the minimum number of
linearly dependent columns in H . To prove the claim we will show that t ≤ d and t ≥ d .

47

For the first direction, Let c ̸= 0 ∈ C be a codeword with w t (c) = d . Now note that, by the
definition of the parity check matrix, H ·cT = 0. Working through the matrix multiplication, this
gives us that

∑n
i=1 ci H i , where

H =

⎛

⎝

↑ ↑ ↑ ↑
H 1 H 2 · · · H i · · · H n

↓ ↓ ↓ ↓

⎞

⎠

and c = (c1, . . . ,cn). Note that we can skip multiplication for those columns for which the corre-
sponding bit ci is zero, so for this to be zero, those H i with ci ̸= 0 are linearly dependent. This
means that d ≥ t , as the columns corresponding to non-zero entries in c are one instance of
linearly dependent columns.

For the other direction, consider the minimum set of columns from H , H i1 , H i2 , . . . , H it that
are linearly dependent. This implies that there exists non-zero elements c ′i1

, . . . ,c ′it
∈ Fq such

that c ′ii
H i1 + . . .+ c ′it

H it = 0. (Note that all the c ′i j
are non-zero as no set of less than t columns

are linearly dependent.) Now extend c ′i1
, . . . ,c ′it

to the vector c′ such that c ′j = 0 for j ̸∈ {i1, . . . , it }.
Note that c′ ∈ C and thus, d ≤ w t (c′) = t (where recall t is the minimum number of linearly
independent columns in H).

2.4 Hamming Codes

We now change gears and look at the general family of linear codes, which were discovered by
Hamming. So far we have seen the [7,4,3]2 Hamming code (in Section 1.5). In fact for any r ≥ 2,
there is a [2r −1,2r − r −1,3]2 Hamming code. Thus in Section 1.5, we have seen this code for
r = 3.

Consider the r × (2r −1) matrix Hr over F2, where the i th column Hi
r , 1 ≤ i ≤ 2r −1, is the

binary representation of i (note that such a representation is a vector in {0,1}r). For example,
for the case we have seen (r = 3),

H3 =

⎛

⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠ .

Note that by its definition, the code that has Hr as its parity check matrix has block length 2r −1
and dimension 2r − r −1. This leads to the formal definition of the general Hamming code.

Definition 2.4.1. The [2r −1,2r −r−1]2 Hamming code, denoted by CH ,r has parity check matrix
Hr .

In other words, the general [2r−1,2r−r−1]2 Hamming code is the code {c ∈ {0,1}2r −1|Hr ·cT =
0}.

Next we argue that the above Hamming code has distance 3 (in Proposition 1.5.1 we argued
this for r = 3).

48

Proposition 2.4.1. The Hamming code [2r −1,2r − r −1,3]2 has distance 3.

Proof. No two columns in Hr are linearly dependent. If they were, we would have Hi
r +H

j
r =

0, but this is impossible since they differ in at least one bit (being binary representations of
integers, i ̸= j). Thus, by Proposition 2.3.5, the distance is at least 3. It is at most 3, since (e.g.)
H1

r +H2
r +H3

r = 0.

Now note that under the Hamming bound for d = 3 (Theorem 1.6.1), k ≤ n − log2(n +1), so
for n = 2r −1, k ≤ 2r − r −1. Hence, the Hamming code is a perfect code. (See Definition 1.7.2.)

In Question 1.7.1, we asked which codes are perfect codes. Interestingly, the only perfect
binary codes are the following:

• The Hamming codes which we just studied.

• The trivial [n,1,n]2 codes for odd n (which have 0n and 1n as the only codewords): see
Exercise 2.22.

• Two codes due to Golay [24].

2.5 Family of codes

Till now, we have mostly studied specific codes, that is, codes with fixed block lengths and di-
mension. The only exception was the “family" of [2r −1,2r −r −1,3]2 Hamming codes (for r ≥ 2)
that we studied in the last section. We will see shortly that when we do an asymptotic study of
codes (which is what we will do), it makes more sense to talk about a family of codes. First, we
define the notion of family of codes:

Definition 2.5.1 (Family of codes). C = {Ci }i≥1 is a family of codes where Ci is a (ni ,ki ,di)q code
for each i (and we assume ni+1 > ni). The rate of C is defined as

R(C) = lim
i→∞

{
ki

ni

}

.

The relative distance of C is defined as

δ(C) = lim
i→∞

{
di

ni

}

.

For example, CH the family of Hamming code is a family of codes with ni = 2i −1,ki = 2i −
i −1,di = 3 and thus,

R(CH) = lim
i→∞

1−
i

2i −1
= 1,

and

δ(CH) = lim
i→∞

3

2i −1
= 0.

49

We will mostly work with family of codes from now on. This is necessary as we will study the
asymptotic behavior of algorithms for codes, which does not make sense for a fixed code. For
example, when we say that a decoding algorithm for a code C takes O(n2) time, we would be
implicitly assuming that C is a family of codes and that the algorithm has an O(n2) running time
when the block length is large enough. From now on, unless mentioned otherwise, whenever
we talk about a code, we will be implicitly assuming that we are talking about a family of codes.

Given that we can only formally talk about asymptotic run time of algorithms, we now also
state our formal notion of efficient algorithms:

We’ll call an algorithm related to a code of block length n to be efficient, if it runs in time
polynomial in n.

For all the specific codes that we will study in this book, the corresponding family of codes
will be a “family" in a more natural sense. In other words, all the specific codes in a family of
codes will be the “same" code except with different parameters. A bit more formally, we will con-
sider families {Ci }i , where given i , one can compute a sufficient description of Ci efficiently.4

Finally, the definition of a family of code allows us to present the final version of the the
big motivating question for the book. The last formal version of the main question we consid-
ered was Question 1.4.1, where we were interested in the tradeoff of rate R and distance d . The
comparison was somewhat unfair because R was a ratio while d was an integer. A more appro-
priate comparison should be between rate R and the relative distance δ. Further, we would be
interested in tackling in the main motivating question for families of codes, which results in the
following final version:

Question 2.5.1. What is the optimal tradeoff between R(C) and δ(C) that can be achieved by

some code family C ?

2.6 Efficient Decoding of Hamming codes

We have shown that Hamming code has distance of 3 and thus, by Proposition 1.4.1, can correct
one error. However, this is a combinatorial result and does not give us an efficient algorithm.
One obvious candidate for decoding is the MLD function. Unfortunately, the only implemen-
tation of MLD that we know is the one in Algorithm 1, which will take time 2Θ(n), where n is the
block length of the Hamming code. However, we can do much better. Consider the following
simple algorithm: given the received word y, first check if it is indeed a valid codeword. If it is,
we are done. Otherwise, flip each of the n bits and check if the resulting vector is a valid code-
word. If so, we have successfully decoded from one error. (If none of the checks are successful,

4We stress that this is not always going to be the case. In particular, we will consider “random" codes where this
efficient constructibility will not be true.

50

then we declare a decoding failure.) Algorithm 2 formally presents this algorithm (where CH ,r

is the [2r −1,2r − r −1,3]2 Hamming code).5

Algorithm 2 Naive Decoder for Hamming Code
INPUT: Received word y

OUTPUT: c if ∆(y,c) ≤ 1 else Fail

1: IF y ∈CH ,r THEN

2: RETURN y

3: FOR i = 1. . .n DO

4: y′ ← y+ei ◃ ei is the i th standard vector
5: IF y′ ∈CH ,r THEN

6: RETURN y′

7: RETURN Fail

It is easy to check that Algorithm 2 can correct up to 1 error. If each of the checks y′ ∈ CH ,r

can be done in T (n) time, then the time complexity of the proposed algorithm will be O(nT (n)).
Note that since CH ,r is a linear code (and dimension k = n −O(logn)) by Proposition 2.3.3, we
have T (n) =O(n logn). Thus, the proposed algorithm has running time O(n2 logn).

Note that Algorithm 2 can be generalized to work for any linear code C with distance 2t +
1 (and hence, can correct up to t errors): go through all possible error vectors z ∈ [q]n (with
w t (z) ≤ t) and check if y− z is in the code or not. Algorithm 3 presents the formal algorithm
(where C is an [n,k,2t +1]q code). The number of error patterns z considered by Algorithm 3

Algorithm 3 Decoder for Any Linear Code
INPUT: Received word y

OUTPUT: c ∈C if ∆(y,c) ≤ t else Fail

1: FOR i = 0. . . t DO

2: FOR S ⊆ [n] such that |S| = i DO

3: FOR z ∈ Fn
q such that w t (zS) = w t (z) = i DO

4: IF y−z ∈C THEN

5: RETURN y−z

6: RETURN Fail

is6 ∑t
i=0

(n
i

)

(q−1)i ≤O((nq)t). Further by Proposition 2.3.3, Step 4 can be performed with O(n2)
operations over Fq . Thus, Algorithm 3 runs in with O(nt+2q t) operations over Fq , which for
q being polynomial small in n, is nO(t) operations. In other words, the algorithm will have

5Formally speaking, a decoding algorithm should return the transmitted message x but Algorithm 2 actually
returns CH ,r (x). However, since CH ,r is a linear code, it is not too hard to see that one can obtain x from CH ,r (x) in
O(n3) time– see Exercise 2.23. Further, for CH ,r one can do this in O(n) time– see Exercise 2.24.

6Recall (1.14).

51

polynomial running time for codes with constant distance (though the running time would not
be practical even for moderate values of t).

However, it turns out that for Hamming codes there exists a decoding algorithm with an
O(n2) running time. To see this first note that if the received word y has no errors then Hr ·yT = 0.
If not, y = c+ei , where c ∈ C and ei which is the unit vector with the only nonzero element at
the i -th position. Thus, if H i

r stands for the i -th column of Hr ,

Hr ·yT = Hr ·cT +Hr · (ei)T = Hr · (ei)T = H i
r ,

where the second equality follows as Hr ·cT = 0, which in turn follows from the fact that c ∈C .
In other words, Hr ·yT gives the location of the error. This leads to Algorithm 4.

Algorithm 4 Efficient Decoder for Hamming Code
INPUT: Received word y

OUTPUT: c if ∆(y,c) ≤ 1 else Fail

1: b ← Hr ·yT .
2: Let i ∈ [n] be the number whose binary representation is b

3: IF y−ei ∈CH THEN

4: RETURN y−ei

5: RETURN Fail

Since Step 1 in Algorithm 4 is a matrix vector multiplication (which can be done in O(n logn)
time as the matrix is O(logn)×n) and Step 3 by Proposition 2.3.3 can be performed in O(n logn)
time, Algorithm 4 runs in O(n logn) time. Thus,

Theorem 2.6.1. The [n = 2r −1,2r − r −1,3]2 Hamming code is 1-error correctable. Further, de-

coding can be performed in time O(n logn).

2.7 Dual of a Linear Code

Till now, we have thought of parity check matrix as defining a code via its null space. However,
we are not beholden to think of the parity check matrix in this way. A natural alternative is to use
the parity check matrix as a generator matrix. The following definition addresses this question.

Definition 2.7.1 (Dual of a code). Let H be a parity check matrix of a code C , then the code
generated by H is called the dual of C . For any code C , its dual is denoted by C⊥.

It is obvious from the definition that if C is an [n,k]q code then C⊥ is an [n,n − k]q code.
The first example that might come to mind is C⊥

H ,r , which is also known as the Simplex code

(we will denote it by CSi m,r). Adding an all 0’s column to Hr and using the resulting matrix as
a generating matrix, we get the Hadamard code (we will denote it by CH ad ,r). We claim that
CSi m,r and CH ad ,r are [2r − 1,r,2r−1]2 and [2r ,r,2r−1]2 codes respectively. The claimed block
length and dimension follow from the definition of the codes, while the distance follows from
the following result.

52

Proposition 2.7.1. CSi m,r and CH ad ,r both have a distance of 2r−1.

Proof. We first show the result for CH ad ,r . In fact, we will show something stronger: every non-
zero codeword in CH ad ,r has weight exactly equal to 2r−1 (the claimed distance follows from
Proposition 2.3.4). Consider a message x ̸= 0. Let its i th entry be xi = 1. x is encoded as

c = (x1, x2, . . . , xr)(H 0
r , H 1

r , . . . , H 2r −1
r),

where H
j
r is the binary representation of 0 ≤ j ≤ 2r − 1 (that is, it contains all the vectors in

{0,1}r). Further note that the j th bit of the codeword c is 〈x, H
j
r 〉. Group all the columns of the

generator matrix into pairs (u,v) such that v = u+ei (i.e. v and u are the same except in the i th
position). Notice that this partitions all the columns into 2r−1 disjoint pairs. Then,

〈x,v〉= 〈x,u+ei 〉= 〈x,u〉+ 〈x,ei 〉= 〈x,u〉+xi = 〈x,u〉+1.

Thus we have that exactly one of 〈x,v〉 and 〈x,u〉 is 1. As the choice of the pair (u,v) was arbitrary,
we have proved that for any non-zero codeword c such that c ∈CH ad , w t (c) = 2r−1.

For the simplex code, we observe that all codewords of CH ad ,3 are obtained by padding a 0 to
the beginning of the codewords in CSi m,r , which implies that all non-zero codewords in CSi m,r

also have a weight of 2r−1, which completes the proof.

We remark that the family of Hamming code has a rate of 1 and a (relative) distance of 0
while the families of Simplex/Hadamard codes have a rate of 0 and a relative distance of 1/2.
Notice that both code families either have rate or relative distance equal to 0. Given this, the
following question is natural special case of Question 2.5.1:

Question 2.7.1. Does there exist a family of codes C such that R(C) > 0 and δ(C) > 0 hold

simultaneously?

Codes that have the above property are called asymptotically good.

2.8 Exercises

Exercise 2.1. Prove that the set of rationals (i.e. the set of reals of the form a
b , where both a and

b ̸= 0 are integers), denoted by Q, is a field.

Exercise 2.2. Let q be a prime power. Let x ∈ Fq such that x ̸∈ {0,1}. Then prove that for any
n ≤ q −1:

n∑

i=0
xi =

xn+1 −1
x −1

.

Exercise 2.3. The main aim of this exercise is to prove the following identity that is true for any
α ∈ Fq :

αq =α (2.4)

53

To make progress towards the above we will prove a sequence of properties of groups. A group G

is a pair (S,◦) where the operator ◦ : G×G →G such that ◦ is commutative7 and the elements of S

are closed under ◦. Further, there is a special element ι ∈ S that is the identity element and every
element a ∈ S has an inverse element b ∈ S such that a ◦b = ι. Note that a finite field Fq consists
of an additive group with the + operator (and 0 as additive identity) and a multiplicative group
on the non-zero elements of Fq (which is also denoted by F∗q) with the · operator (and 1 as the
multiplicative identity).8

For the rest of the problem let G = (S, ·) be a multiplicative group with |G| = m. Prove the
following statements.

1. For any β ∈G , let o(β) be the smallest integer o such that βo = 1. Prove that such an o ≤ m

always exists. Further, argue that T = {1,β, . . . ,βo−1} also forms a group. (T, ·) is called a
sub-group of G and o(β) is called the order of β.

2. For any g ∈G , define the coset (w.r.t. T) as

g T = {g ·β|β ∈ T }.

Prove that if g ·h−1 ∈ T then g T = hT and g T ∩hT =7 otherwise. Further argue that these
cosets partition the group G into disjoint sets.

3. Argue that for any g ∈G , we have |g T | = |T |.

4. Using the above results or otherwise, argue that for any β ∈G , we have

βm = 1.

5. Prove (2.4).

Exercise 2.4. Prove that for q = 2, the second condition in Definition 2.2.1 is implied by the first
condition.

Exercise 2.5. Prove that G2 from (2.3) has full rank.

Exercise 2.6. In this problem we will look at the problem of solving a system of linear equa-
tions over Fq . That is, one needs to solve for unknowns x1, . . . , xn given the following m linear
equations (where ai , j ,bi ∈ Fq for 1 ≤ i ≤ m and 1 ≤ j ≤ n):

a1,1x1 +a1,2x2 +·· ·+a1,n xn = b1.

a2,1x1 +a2,2x2 +·· ·+a2,n xn = b2.

...

am,1x1 +am,2x2 +·· ·+am,n xn = bm .

7Technically, G is an abelian group.
8Recall Definition 2.1.1.

54

1. (Warm-up) Convince yourself that the above problem can be stated as A ·xT = bT , where
A is an m ×n matrix over Fq , x ∈ Fn

q and b ∈ Fm
q .

2. (Upper Triangular Matrix) Assume n = m and that A is upper triangular, i.e. all diagonal
elements (ai ,i) are non-zero and all lower triangular elements (ai , j , i > j) are 0. Then
present an O(n2) time9 algorithm to compute the unknown vector x.

3. (Gaussian Elimination) Assume that A has full rank (or equivalently a rank of n.)

(a) Prove that the following algorithm due to Gauss converts A into an upper triangular
matrix. By permuting the columns if necessary make sure that a1,1 ̸= 0. (Why can
one assume w.l.o.g. that this can be done?) Multiply all rows 1 < i ≤ n with a1,1

ai ,1
and

then subtract a1, j from the (i , j)th entry 1 ≤ j ≤ n. Recurse with the same algorithm
on the (n−1)×(n−1) matrix A′ obtained by removing the first row and column from
A. (Stop when n = 1.)

(b) What happens if A does not have full rank? Show how one can modify the algorithm
above to either upper triangulate a matrix or report that it does not have full rank.
(Convince yourself that your modification works.)

(c) Call a system of equations A ·xT = bT consistent if there exists a solution to x ∈ Fn
q .

Show that there exists an O(n3) algorithm that finds the solution if the system of
equations is consistent and A has full rank (and report “fail" otherwise).

4. (m < n case) Assume that A has full rank, i.e. has a rank of m. In this scenario either the
system of equations is inconsistent or there are qn−m solutions to x. Modify the algorithm
from above to design an O(m2n) time algorithm to output the solutions (or report that the
system is inconsistent).

• Note that in case the system is consistent there will be qn−m solutions, which might
be much bigger than O(m2n). Show that this is not a problem as one can represent
the solutions as system of linear equations. (I.e. one can have n −m “free" variables
and m “bound" variables.)

5. (m > n case) Assume that A has full rank, i.e. a rank of n. In this scenario either the
system of equations is inconsistent or there is a unique solution to x. Modify the algorithm
from above to design an O(m2n) time algorithm to output the solution (or report that the
system is inconsistent).

6. (Non-full rank case) Give an O(m2n) algorithm for the general case, i.e. the m×n matrix A

need not have full rank. (The algorithm should either report that the system of equations
is inconsistent or output the solution(s) to x.)

Exercise 2.7. Prove that the span of k linearly independent vectors over Fq has size exactly qk .

9For this problem, any basic operation over Fq takes unit time.

55

Exercise 2.8. Let G and H be a generator and parity check matrix of the same linear code of
dimension k and block length n. Then G ·H T = 0.

Exercise 2.9. Let C be an [n,k]q linear code with a generator matrix with no all zeros columns.
Then for every position i ∈ [n] and α ∈ Fq , the number of codewords c ∈ C such that ci = α is
exactly qk−1.

Exercise 2.10. Prove Proposition 2.3.1.

Exercise 2.11. Prove Proposition 2.3.2.

Exercise 2.12. Prove Proposition 2.3.3.

Exercise 2.13. A set of vector S ⊆ Fn
q is called t-wise independent if for every set of positions

I with |I | = t , the set S projected to I has each of the vectors in Ft
q appear the same number

of times. (In other words, if one picks a vector (s1, . . . , sn) from S at random then any of the t

random variables are uniformly and independently random over Fq).
Prove that any linear code C whose dual C⊥ has distance d⊥ is (d⊥−1)-wise independent.

Exercise 2.14. A set of vectors S ⊆ Fk
2 is called ε-biased sample space if the following property

holds. Pick a vector X = (x1, . . . , xk) uniformly at random from S. Then X has bias at most ε, that
is, for every I ⊆ [k],

∣
∣
∣
∣
∣
Pr

(

∑

i∈I

xi = 0

)

−Pr

(

∑

i∈I

xi = 1

)∣
∣
∣
∣
∣
≤ ε.

We will look at some connections of such sets to codes.

1. Let C be an [n,k]2 code such that all non-zero codewords have Hamming weight in the
range

[(1
2 −ε

)

n,
(1

2 +ε
)

n
]

. Then there exists an ε-biased space of size n.

2. Let C be an [n,k]2 code such that all non-zero codewords have Hamming weight in the
range

[(1
2 −γ

)

n,
(1

2 +γ
)

n
]

for some constant 0 < γ < 1/2. Then there exists an ε-biased

space of size nO(γ−1·log(1/ε)).

Exercise 2.15. Let C be an [n,k,d]q code. Let y = (y1, . . . , yn) ∈ (Fq ∪ {?})n be a received word10

such that yi =? for at most d − 1 values of i . Present an O(n3) time algorithm that outputs a
codeword c = (c1, . . . ,cn) ∈C that agrees with y in all un-erased positions (i.e., ci = yi if yi ̸=?) or
states that no such c exists. (Recall that if such a c exists then it is unique.)

Exercise 2.16. In the chapter, we did not talk about how to obtain the parity check matrix of a
linear code from its generator matrix. In this problem, we will look at this “conversion" proce-
dure.

(a) Prove that any generator matrix G of an [n,k]q code C (recall that G is a k ×n matrix) can
be converted into another equivalent generator matrix of the form G′ = [Ik |A], where Ik is
the k ×k identity matrix and A is some k × (n −k) matrix. By “equivalent," we mean that
the code generated by G′ has a linear bijective map to C .

10A ? denotes an erasure.

56

Note that the code generated by G′ has the message symbols as its first k symbols in the
corresponding codeword. Such codes are called systematic codes. In other words, every
linear code can be converted into a systematic code. Systematic codes are popular in
practice as they allow for immediate access to the message symbols.

(b) Given an k ×n generator matrix of the form [Ik |A], give a corresponding (n −k)×n par-
ity check matrix. Briefly justify why your construction of the parity check matrix is correct.

Hint: Try to think of a parity check matrix that can be decomposed into two submatri-
ces: one will be closely related to A and the other will be an identity matrix, though the
latter might not be a k ×k matrix).

(c) Use part (b) to present a generator matrix for the [2r −1,2r − r −1,3]2 Hamming code.

Exercise 2.17. So far in this book we have seen that one can modify one code to get another
code with interesting properties (for example, the construction of the Hadamard code from the
Simplex code from Section 2.7 and Exercise 1.7). In this problem you will need to come up with
more ways of constructing new codes from existing ones.

Prove the following statements (recall that the notation (n,k,d)q code is used for general
codes with qk codewords where k need not be an integer, whereas the notation [n,k,d]q code
stands for a linear code of dimension k):

1. If there exists an (n,k,d)2m code, then there also exists an (nm,km,d ′ ≥ d)2 code.

2. If there exists an [n,k,d]2m code, then there also exists an [nm,km,d ′ ≥ d]2 code.

3. If there exists an [n,k,d]q code, then there also exists an [n −d ,k −1,d ′ ≥ ⌈d/q⌉]q code.

4. If there exists an [n,k,δn]q code, then for every m ≥ 1, there also exists an
(

nm ,k/m,
(

1− (1−δ)m
)

·nm
)

qm

code.

5. If there exists an [n,k,δn]2 code, then for every odd m ≥ 1, there also exists an
[

nm ,k, 1
2 ·

(

1− (1−2δ)m
)

·nm

code.

Note: In all the parts, the only things that you can assume about the original code are only the
parameters given by its definition– nothing else!

Exercise 2.18. Let C1 be an [n,k1,d1]q code and C2 be an [n,k2,d2]q code. Then define a new
code as follows:

C1 ⊖C2 = {(c1,c1 +c2)|c1 ∈C1,c2 ∈C2}.

Next we will prove interesting properties of this operations on codes:

1. If Gi is the generator matrix for Ci for i ∈ [2], what is a generator matrix for C1 ⊖C2?

2. Argue that C1 ⊖C2 is an [2n,k1 +k2,d
def= min(2d1,d2)]q code.

57

3. Assume there exists algorithms Ai for code Ci for i ∈ [2] such that: (i) A1 can decode from
e errors and s erasures such that 2e+s < d1 and (ii) A2 can decode from ⌊(d2−1)/2⌋ errors.
Then argue that one can correct ⌊(d −1)/2⌋ errors for C1 ⊖C2.
Hint: Given a received word (y1,y2) ∈ Fn

q × Fn
q , first apply A2 on y2 − y1. Then create an

intermediate received word for A1.

4. We will now consider a recursive construction of a binary linear code that uses the ⊖ op-
erator. For integers 0 ≤ r ≤ m, we define the code C (r,m) as follows:

• C (r,r) = Fr
2 and C (0,r) is the code with only two codewords: the all ones and all

zeroes vector in Fr
2.

• For 1 < r < m, C (r,m) =C (r,m −1)⊖C (r −1,m −1).

Determine the parameters of the code C (r,m).

Exercise 2.19. Let C1 be an [n1,k1,d1]2 binary linear code, and C2 an [n2,k2,d2] binary linear
code. Let C ⊆ F

n1×n2
2 be the subset of n1 ×n2 matrices whose columns belong to C1 and whose

rows belong to C2. C is called the tensor of C1 and C2 and is denoted by C1 ⊗C2.
Prove that C is an [n1n2,k1k2,d1d2]2 binary linear code.

Exercise 2.20. In Section 2.4 we considered the binary Hamming code. In this problem we will
consider the more general q-ary Hamming code. In particular, let q be a prime power and r ≥ 1
be an integer. Define the following r ×n matrix Hq,r , where each column is an non-zero vector
from Fr

q such that the first non-zero entry is 1. For example,

H3,2 =
(

0 1 1 1
1 0 1 2

)

In this problem we will derive the parameters of the code. Define the generalized Hamming
code CH ,r,q to be the linear code whose parity check matrix is Hq,r . Argue that

1. The block length of CH ,r,q is n = qr −1
q−1 .

2. CH ,q,r has dimension n − r .

3. CH ,q,r has distance 3.

Exercise 2.21. Design the best 6-ary code (family) with distance 3 that you can.

Hint: Start with a 7-ary Hamming code.

Exercise 2.22. Prove that the [n,1,n]2 code for odd n (i.e. the code with the all zeros and all ones
vector as it only two codewords) attains the Hamming bound (Theorem 1.7.1).

Exercise 2.23. Let C be an [n,k]q code with generator matrix G . Then given a codeword c ∈ C

one can compute the corresponding message in time O(kn2).

Exercise 2.24. Given a c ∈CH ,r , one can compute the corresponding message in time O(n).

58

Exercise 2.25. Let C be an (n,k)q code. Prove that if C can be decoded from e errors in time
T (n), then it can be decoded from n + c errors in time O((nq)c ·T (n)).

Exercise 2.26. Show that the bound of kd of the number of ones in the generator matrix of any
binary linear code (see Exercise 1.12) cannot be improved for every code.

Exercise 2.27. Let C be a linear code. Then prove that
(

C⊥)⊥ =C .

Exercise 2.28. Note that for any linear code C , the codewords 0 is in both C and C⊥. Show that
there exists a linear code C such that it shares a non-zero codeword with C⊥.

Exercise 2.29. We go into a bit of diversion and look at how finite fields are different from infinite
fields (e.g. R). Most of the properties of linear subspaces that we have used for linear codes (e.g.
notion of dimension, the existence of generator and parity check matrices, notion of duals) also
hold for linear subspaces over R.11 One trivial property that holds for linear subspaces over
finite fields that does not hold over R is that linear subspaces over Fq with dimension k has size
qk (though this is a trivial consequence that Fq are finite field while R is an infinite field). Next,
we consider a more subtle distinction.

Let S ⊆Rn be a linear subspace over R and let S⊥ is the dual of S. Then show that

S ∩S⊥ = {0} .

By contrast, linear subspaces over finite fields can have non-trivial intersection with their duals
(see e.g. Exercise 2.28).

Exercise 2.30. A linear code C is called self-orthogonal if C ⊆C⊥. Show that

1. The binary repetition code with even number of repetitions is self-orthogonal.

2. The Hadamard code CH ad ,r is self-orthogonal.

Exercise 2.31. A linear code C is called self dual if C =C⊥. Show that for

1. Any self dual code has dimension n/2.

2. Prove that the following code is self-dual

{(x,x)|x ∈ Fk
2 }.

Exercise 2.32. Given a code C a puncturing of C is another code C ′ where the same set of po-
sitions are dropped in all codewords of C . More precisely, if C ⊆ Σ

n and the set of punctured
positions is P ⊆ [n], then the punctured code is {(ci)i ̸∈P |(c1, . . . ,cn) ∈C }.

Prove that a linear code with no repetitions (i.e. there are no two positions i ̸= j such that for
every codeword c ∈C , ci = ci) is a puncturing of the Hadamard code. Hence, Hadamard code is
the “longest" linear code that does not repeat.

11A linear subspace S ⊆Rn is the same as in Definition 2.2.1 where all occurrences of the finite field Fq is replaced
by R.

59

Exercise 2.33. In this problem we will consider the long code. For the definition, we will use the
functional way of looking at the ambient space as mentioned in Remark 1.2.1. A long code of
dimension k is a binary code such that the codeword corresponding to x = Fk

2 , is the function

f : {0,1}2k
→ {0,1} defined as follows. For any m ∈ {0,1}F

k
2 , we have f ((mα)α∈Fk

2
) = mx. Derive the

parameters of the long code.
Finally, argue that the long code is the code with the longest block length such that the

codewords do not have a repeated coordinate (i.e. there does not exists i ̸= j such that for every
codeword c, ci = c j). (Contrast this with the property of Hadamard code above.)

2.9 Bibliographic Notes

Finite fields are also called Galois fields (another common notation for Fq is GF (q)), named
after Évariste Galois, whose worked laid the foundations of their theory. (Galois led an extremely
short and interesting life, which ended in death from a duel.) For a more thorough treatment
refer to any standard text on algebra or the book on finite fields by Lidl and Niederreiter [52].

The answer to Question 1.7.1 was proved by van Lint [74] and Tietavainen [73].

60

