
Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-
ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY
and by Madhu Sudan at MIT.

This version is dated August 15, 2014. For the latest version, please go to

http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under
CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2014.
This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444
Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Chapter 3

Probability as Fancy Counting and the q-ary

Entropy Function

In the first half of this chapter, we will develop techniques that will allow us to answer questions
such as

Question 3.0.1. Does there exist a [2,2,1]2 code?

We note that the answer to the above question is trivially yes: just pick the generator matrix
to be the 2×2 identity matrix. However, we will use the above as a simple example to illustrate
a powerful technique called the probabilistic method.

As the name suggests, the method uses probability. Before we talk more about the proba-
bilistic method, we do a quick review of the basics of probability that we will need in this book.

3.1 A Crash Course on Probability

In this book, we will only consider probability distributions defined over finite spaces. In par-
ticular, given a finite domain D, a probability distribution is defined as a function

p : D→ [0,1] such that
∑

x∈D
p(x) = 1,

where [0,1] is shorthand for the interval of all real numbers between 0 and 1. In this book, we
will primarily deal with the following special distribution:

Definition 3.1.1 (Uniform Distribution). The uniform distribution over D, denoted by UD, is
given by

UD(x) =
1
|D|

for every x ∈D.

Typically we will drop the subscript when the domain D is clear from the context.
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1 0
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1
16 0 2 1 1

(

1 1
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)

1
16 0 0 2 2
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1 1
0 1
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1
16 0 1 2 1
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1 1
1 0

)

1
16 0 1 2 1

(

1 1
1 1

)

1
16 0 2 2 0

Table 3.1: Uniform distribution over F2×2
2 along with values of four random variables.

For example, consider the domain D = F2×2
2 , i.e. the set of all 2×2 matrices over F2. (Note

that each such matrix is a generator matrix of some [2,2]2 code.) The first two columns of Ta-
ble 3.1 list the elements of this D along with the corresponding probabilities for the uniform
distribution.

Typically, we will be interested in a real-valued function defined on D and how it behaves
under a probability distribution defined over D. This is captured by the notion of a random
variable:

Definition 3.1.2 (Random Variable). Let D be a finite domain and I ⊂ R be a finite1 subset. Let
p be a probability distribution defined over D. A random variable is a function:

V : D→ I .

The expectation of V is defined as

E[V ] =
∑

x∈D
p(x) ·V (x).

For example, given (i , j ) ∈ {0,1}2, let Vi j denote the random variable Vi j (G) = w t
(

(i , j ) ·G
)

,
for any G ∈ F2×2

2 . The last four columns of Table 3.1 list the values of these four random variables.
In this book, we will mainly consider binary random variables, i.e., with I = {0,1}. In partic-

ular, given a predicate or event E over D, we will define its indicator variable 1E to be 1 if E is

1In general, I need not be finite. However, for this book this definition suffices.
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true and 0 if E is false. Sometimes, we will abuse notation and use E instead of 1E . For example,
consider the expectations of the four indicator variables:

E
[

1V00=0
]

= 16 ·
1

16
= 1.

E
[

1V01=0
]

= 4 ·
1

16
=

1
4

. (3.1)

E
[

1V10=0
]

= 4 ·
1

16
=

1
4

. (3.2)

E
[

1V11=0
]

= 4 ·
1

16
=

1
4

. (3.3)

3.1.1 Some Useful Results

Before we proceed, we record a simple property of indicator variables that will be useful. (See
Exercise 3.1.)

Lemma 3.1.1. Let E be any event. Then

E [1E ] = Pr[E is true] .

Next, we state a simple yet useful property of expectation of a sum of random variables:

Proposition 3.1.2 (Linearity of Expectation). Given random variables V1, . . . ,Vm defined over the

same domain D and with the same probability distribution p, we have

E

[
m∑

i=1
Vi

]

=
m∑

i=1
E [Vi ] .

Proof. For notational convenience, define V =V1 +·· ·+Vm . Thus, we have

E[V ] =
∑

x∈D
V (x) ·p(x) (3.4)

=
∑

x∈D

(
m∑

i=1
Vi (x)

)

·p(x) (3.5)

=
m∑

i=1

∑

x∈D
Vi (x) ·p(x) (3.6)

=
m∑

i=1
E[Vi ]. (3.7)

In the equalities above, (3.4) and (3.7) follow from the definition of expectation of a random
variable. (3.5) follows from the definition of V and (3.6) follows by switching the order of the
two summations.
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As an example, we have

E
[

1V01=0 + 1V10=0 + 1V11=0
]

=
3
4

(3.8)

Frequently, we will need to deal with the probability of the “union" of events. We will use
the following result to upper bound such probabilities:

Proposition 3.1.3 (Union Bound). Given m binary random variables A1, . . . , Am, we have

Pr

[(
m∨

i=1
Ai

)

= 1

]

≤
m∑

i=1
Pr[Ai = 1] .

Proof. For every i ∈ [m], define
Si = {x ∈D|Ai (x) = 1}.

Then we have

Pr

[(
m∨

i=1
Ai

)

= 1

]

=
∑

x∈∪m
i=1Si

p(x) (3.9)

≤
m∑

i=1

∑

x∈Si

p(x) (3.10)

=
m∑

i=1
Pr[Ai = 1]. (3.11)

In the above, (3.9) and (3.11) follow from the definition of Si . (3.10) follows from the fact that
some of the x ∈∪i Si get counted more than once.

We remark that the union bound is tight when the events are disjoint. (In other words, using
the notation in the proof above, when Si ∩S j =( for every i )= j .)

As an example, let A1 = 1V01=0, A2 = 1V10=0 and A3 = 1V11=0. Note that in this case the event
A1∨A2∨A3 is the same as the event that there exists a non-zero m ∈ {0,1}2 such that w t (m·G) =
0. Thus, the union bound implies (that under the uniform distribution over F2×2

2 )

Pr
[

There exists an m ∈ {0,1}2 \ {(0,0)}, such that w t (mG) = 0
]

≤
3
4

. (3.12)

Finally, we present two bounds on the probability of a random variable deviating signifi-
cantly from its expectation. The first bound holds for any random variable:

Lemma 3.1.4 (Markov Bound). Let V be a non-zero random variable. Then for any t > 0,

Pr[V ≥ t ] ≤
E[V ]

t
.

In particular, for any a ≥ 1,

Pr[V ≥ a ·E[V ]] ≤
1
a

.
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Proof. The second bound follows from the first bound by substituting t = a · E[V ]. Thus, to
complete the proof, we argue the first bound. Consider the following sequence of relations:

E[V ] =
∑

i∈[0,t )
i ·Pr[V = i ]+

∑

i∈[t ,∞)
i ·Pr[V = i ] (3.13)

≥
∑

i≥t

i ·Pr[V = i ] (3.14)

≥ t ·
∑

i≥t

Pr[V = i ] (3.15)

= t ·Pr[V ≥ t ]. (3.16)

In the above relations, (3.13) follows from the definition of expectation of a random variable and
the fact that V is positive. (3.14) follows as we have dropped some non-negative terms. (3.15)
follows by noting that in the summands i ≥ t . (3.16) follows from the definition of Pr[V ≥ t ].

The proof is complete by noting that (3.16) implies the claimed bound.

The second bound works only for sums of independent random variables. We begin by
defining independent random variables:

Definition 3.1.3 (Independence). Two random variables A and B are called independent if for
every a and b in the ranges of A and B , we have

Pr[A = a ∧B = b] = Pr[A = a] ·Pr[B = b].

For example, for the uniform distribution in Table 3.1, let A denote the bit G0,0 and B denote
the bit G0,1. It can be verified that these two random variables are independent. In fact, it can be
verified all the random variables corresponding to the four bits in G are independent random
variables. (We’ll come to a related comment shortly.)

Another related concept that we will use is that of probability of an event happening condi-
tioned on another event happening:

Definition 3.1.4 (Conditional Probability). Given two events A and B defined over the same
domain and probability distribution, we define the probability of A conditioned on B as

Pr[A|B ] =
Pr[A and B ]

Pr[B ]
.

For example, note that

Pr[1V01=1|G0,0 = 0] =
4/16
1/2

=
1
2

.

The above definition implies that two events A and B are independent if and only if Pr[A] =
Pr[A|B ]. We will also use the following result later on in the book (see Exercise 3.2):

Lemma 3.1.5. For any two events A and B defined on the same domain and the probability

distribution:

Pr[A] = Pr[A|B ] ·Pr[B ]+Pr[A|¬B ] ·Pr[¬B ].
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Next, we state the deviation bound. (We only state it for sums of binary random variables,
which is the form that will be needed in the book.)

Theorem 3.1.6 (Chernoff Bound). Let X1, . . . , Xm be independent binary random variables and

define X =
∑

Xi . Then the multiplicative Chernoff bound sates

Pr[|X −E(X )| > εE(X )] < e−ε2E(X )/3,

and the additive Chernoff bound states that

Pr[|X −E(X )| > εm] < e−ε2m/2.

We omit the proof, which can be found in any standard textbook on randomized algorithms.
Finally, we present an alternate view of uniform distribution over “product spaces" and then

use that view to prove a result that we will use later in the book. Given probability distributions
p1 and p2 over domains D1 and D2 respectively, we define the product distribution p1 ×p2 over
D1 ×D2 as follows: every element (x, y) ∈ D1 ×D2 under p1 × p2 is picked by choosing x from
D1 according to p1 and y is picked independently from D2 under p2. This leads to the following
observation (see Exercise 3.3).

Lemma 3.1.7. For any m ≥ 1, the distribution UD1×D2×···×Dm is identical to the distribution UD1×
UD2 × · · ·×UDm .

For example, the uniform distribution in Table 3.1 can be described equivalently as follows:
pick each of the four bits in G independently and uniformly at random from {0,1}.

We conclude this section by proving the following result:

Lemma 3.1.8. Given a non-zero vector m ∈ Fk
q and a uniformly random k ×n matrix G over Fq ,

the vector m ·G is uniformly distributed over Fn
q .

Proof. Let the ( j , i )th entry in G (1 ≤ j ≤ k,1 ≤ i ≤ n) be denoted by g j i . Note that as G is a ran-
dom k×n matrix over Fq , by Lemma 3.1.7, each of the g j i is an independent uniformly random
element from Fq . Now, note that we would be done if we can show that for every 1 ≤ i ≤ n, the
i th entry in m ·G (call it bi ) is an independent uniformly random element from Fq . To finish
the proof, we prove this latter fact. If we denote m = (m1, . . . ,mk ), then bi =

∑k
j=1 m j g j i . Note

that the disjoint entries of G participate in the sums for bi and b j for i )= j . Given our choice of
G , this implies that the random variables bi and b j are independent. Hence, to complete the
proof we need to prove that bi is a uniformly independent element of Fq . The rest of the proof
is a generalization of the argument we used in the proof of Proposition 2.7.1.

Note that to show that bi is uniformly distributed over Fq , it is sufficient to prove that bi

takes every value in Fq equally often over all the choices of values that can be assigned to
g1i , g2i , . . . , gki . Now, as m is non-zero, at least one of the its element is non-zero: without loss of
generality assume that m1 )= 0. Thus, we can write bi = m1g1i +

∑k
j=2 m j g j i . Now, for every fixed

assignment of values to g2i , g3i , . . . , gki (note that there are qk−1 such assignments), bi takes a
different value for each of the q distinct possible assignments to g1i (this is where we use the
assumption that m1 )= 0). Thus, over all the possible assignments of g1i , . . . , gki , bi takes each of
the values in Fq exactly qk−1 times, which proves our claim.

64



3.2 The Probabilistic Method

The probabilistic method is a very powerful method in combinatorics which can be used to
show the existence of objects that satisfy certain properties. In this course, we will use the prob-
abilistic method to prove existence of a code C with certain property P . Towards that end, we
define a distribution D over all possible codes and prove that when C is chosen according to D:

Pr
[

C has propertyP
]

> 0 or equivalently Pr
[

C doesn’t have propertyP
]

< 1.

Note that the above inequality proves the existence of C with property P .
As an example consider Question 3.0.1. To answer this in the affirmative, we note that the

set of all [2,2]2 linear codes is covered by the set of all 2×2 matrices over F2. Then, we let D be
the uniform distribution over F2×2

2 . Then by Proposition 2.3.4 and (3.12), we get that

Pr
U

F2×2
2

[There is no [2,2,1]2 code] ≤
3
4
< 1,

which by the probabilistic method answers the Question 3.0.1 in the affirmative.
For the more general case, when we apply the probabilistic method, the typical approach

will be to define (sub-)properties P1, . . . ,Pm such that P = P1∧P2∧P3 . . .∧Pm and show that for
every 1 ≤ i ≤ m:

Pr
[

C doesn’t have property Pi

]

= Pr
[

Pi

]

<
1
m

.

Finally, by the union bound, the above will prove that2 Pr
[

C doesn’t have propertyP
]

< 1, as
desired.

As an example, an alternate way to answer Question 3.0.1 in the affirmative is the following.
Define P1 = 1V01≥1, P2 = 1V10≥1 and P3 = 1V11≥1. (Note that we want a [2,2]2 code that satisfies
P1 ∧P2 ∧P3.) Then, by (3.1), (3.2) and (3.3), we have for i ∈ [3],

Pr
[

C doesn’t have property Pi

]

= Pr
[

Pi

]

=
1
4
<

1
3

,

as desired.
Finally, we mention a special case of the general probabilistic method that we outlined

above. In particular, let P denote the property that the randomly chosen C satisfies f (C ) ≤ b.
Then we claim (see Exercise 3.4) that E[ f (C )] ≤ b implies that Pr[C has property P ] > 0. Note
that this implies that E[ f (C )] ≤ b implies that there exists a code C such that f (C ) ≤ b.

3.3 The q-ary Entropy Function

We begin with the definition of a function that will play a central role in many of our combina-
torial results.

2Note that P = P1 ∨P2 ∨ · · ·∨Pm .
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Definition 3.3.1 (q-ary Entropy Function). Let q be an integer and x be a real number such that
q ≥ 2 and 0 ≤ x ≤ 1. Then the q-ary entropy function is defined as follows:

Hq (x) = x logq (q −1)−x logq (x)− (1−x) logq (1−x).

Figure 3.1 presents a pictorial representation of the Hq function for the first few values of q .
For the special case of q = 2, we will drop the subscript from the entropy function and denote

 0
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 0  0.2  0.4  0.6  0.8  1

H
q(

x)
  -
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x  --->

q=2
q=3
q=4

Figure 3.1: A plot of Hq (x) for q = 2,3 and 4. The maximum value of 1 is achieved at x = 1−1/q .

H2(x) by just H(x), that is, H(x) = −x log x − (1− x) log(1− x), where log x is defined as log2(x)
(we are going to follow this convention for the rest of the book).

Under the lens of Shannon’s entropy function, H(x) denotes the entropy of the distribution
over {0,1} that selects 1 with probability x and 0 with probability 1− x. However, there is no
similar analogue for the more general Hq (x). The reason why this quantity will turn out to be
so central in this book is that it is very closely related to the “volume" of a Hamming ball. We
make this connection precise in the next subsection.

3.3.1 Volume of Hamming Balls

It turns out that in many of our combinatorial results, we will need good upper and lower
bounds on the volume of a Hamming ball. Next we formalize the notion of the volume of a
Hamming ball:

Definition 3.3.2 (Volume of a Hamming Ball). Let q ≥ 2 and n ≥ r ≥ 1 be integers. Then the
volume of a Hamming ball of radius r is given by

V olq (r,n) = |Bq (0,r )| =
r∑

i=0

(

n

i

)

(q −1)i .
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The choice of 0 as the center for the Hamming ball above was arbitrary: since the volume
of a Hamming ball is independent of its center (as is evident from the last equality above), we
could have picked any center.

We will prove the following result:

Proposition 3.3.1. Let q ≥ 2 be an integer and 0 ≤ p ≤ 1− 1
q be a real. Then for large enough n:

(i) V olq (pn,n) ≤ q Hq (p)n; and

(ii) V olq (pn,n) ≥ q Hq (p)n−o(n).

Proof. We start with the proof of (i). Consider the following sequence of relations:

1 = (p + (1−p))n

=
n∑

i=0

(

n

i

)

pi (1−p)n−i (3.17)

=
pn∑

i=0

(

n

i

)

pi (1−p)n−i +
n∑

i=pn+1

(

n

i

)

pi (1−p)n−i

≥
pn∑

i=0

(

n

i

)

pi (1−p)n−i (3.18)

=
pn∑

i=0

(

n

i

)

(q −1)i

(
p

q −1

)i

(1−p)n−i

=
pn∑

i=0

(

n

i

)

(q −1)i (1−p)n

(
p

(q −1)(1−p)

)i

≥
pn∑

i=0

(

n

i

)

(q −1)i (1−p)n

(
p

(q −1)(1−p)

)pn

(3.19)

=
pn∑

i=0

(

n

i

)

(q −1)i

(
p

q −1

)pn

(1−p)(1−p)n (3.20)

≥ V olq (pn,n)q−Hq (p)n . (3.21)

In the above, (3.17) follows from the binomial expansion. (3.18) follows by dropping the second
sum and (3.19) follows from that facts that p

(q−1)(1−p) ≤ 1 (as3 p ≤ 1−1/q) and pn ≥ 1 (for large
enough n). Rest of the steps except (3.21) follow from rearranging the terms. (3.21) follows as

q−Hq (p)n =
(

p
q−1

)pn
(1−p)(1−p)n .

(3.21) implies that
1 ≥V olq (pn,n)q−Hq (p)n ,

which proves (i).

3Indeed, note that p
(q−1)(1−p) ≤ 1 is true if p

1−p ≤ q−1
1 , which in turn is true if p ≤ q−1

q , where the last step follows
from Lemma B.2.1.
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We now turn to the proof of part (ii). For this part, we will need Stirling’s approximation for
n! (Lemma B.1.2).

By the Stirling’s approximation, we have the following inequality:
(

n

pn

)

=
n!

(pn)!((1−p)n)!

>
(n/e)n

(pn/e)pn((1−p)n/e)(1−p)n
·

1
√

2πp(1−p)n
·eλ1(n)−λ2(pn)−λ2((1−p)n)

=
1

ppn(1−p)(1−p)n
·$(n), (3.22)

where $(n) = eλ1(n)−λ2(pn)−λ2((1−p)n)
/

2πp(1−p)n
.

Now consider the following sequence of relations that complete the proof:

V olq (pn,n) ≥

(

n

pn

)

(q −1)pn (3.23)

>
(q −1)pn

ppn(1−p)(1−p)n
·$(n) (3.24)

≥ q Hq (p)n−o(n). (3.25)

In the above (3.23) follows by only looking at one term. (3.24) follows from (3.22) while (3.25)
follows from the definition of Hq (·) and the fact that for large enough n, $(n) is q−o(n).

Next, we consider how the q-ary entropy function behaves for various ranges of its parame-
ters.

3.3.2 Other Properties of the q-ary Entropy function

We begin by recording the behavior of q-ary entropy function for large q .

Proposition 3.3.2. For small enough ε, 1−Hq (ρ) ≥ 1−ρ−ε for every 0 < ρ ≤ 1−1/q if and only

if q is 2Ω(1/ε).

Proof. We first note that by definition of Hqρ) and H(ρ),

Hq (ρ) = ρ logq (q −1)−ρ logq ρ− (1−ρ) logq (1−ρ)

= ρ logq (q −1)+H(ρ)/ log2 q.

Now if q ≥ 21/ε, we get that
Hq (ρ) ≤ ρ+ε.

as logq (q − 1) ≤ 1 and H(ρ) ≤ 1. Thus, we have argued that for q ≥ 21/ε, we have 1− Hq (ρ) ≥
1−ρ−ε, as desired.
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Next, we consider the case when q = 2o(1/ε). We begin by claiming that for small enough ε,

if q ≥ 1/ε2 then logq (q −1) ≥ 1−ε.

Indeed, logq (q −1) = 1+ (1/ln q) ln(1−1/q) = 1−O
(

1
q ln q

)

,4 which is at least 1−ε for q ≥ 1/ε2

(and small enough ε).
Finally, if q = 2o

( 1
ε

)

, then for fixed ρ,

H(ρ)/ log q = ε ·ω(1).

Then for q = 2o
( 1
ε

)

(but q ≥ 1/ε2) we have

ρ logq (q −1)+H(ρ)/ log q ≥ ρ−ε+ε ·ω(1) > ρ+ε,

which implies that
1−Hq (ρ) < 1−ρ−ε,

as desired. For q ≤ 1/ε2, Lemma 3.3.3 shows that 1−Hq (ρ) ≤ 1−H1/ε2 (ρ) < 1−ρ−ε, as desired.

We will also be interested in how Hq (x) behaves for fixed x and increasing q :

Lemma 3.3.3. Let q ≥ 2 be an integer and let 0 ≤ ρ ≤ 1−1/q, then for any real m ≥ 1 such that

qm−1 ≥
(

1+
1

q −1

)q−1

, (3.26)

we have

Hq (ρ) ≥ Hqm (ρ).

Proof. Note that Hq (0) = Hqm (0) = 0. Thus, for the rest of the proof we will assume that ρ ∈
(0,1−1/q].

As observed in the proof of Proposition 3.3.2, we have

Hq (ρ) = ρ ·
log(q −1)

log q
+H(ρ) ·

1
log q

.

Using this, we obtain

Hq (ρ)−Hqm (ρ) = ρ

(
log(q −1)

log q
−

log(qm −1)
m log q

)

+H(ρ)
(

1
log q

−
1

m log q

)

.

The above in turn implies that

1
ρ
·m log q · (Hq (ρ)−Hqm (ρ)) = log(q −1)m − log(qm −1)+

H(ρ)
ρ

(m −1)

4The last equality follows from the fact that by Lemma B.2.2, for 0 < x < 1, ln(1−x) =−O(x).
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≥ log(q −1)m − log(qm −1)+
H(1−1/q)

1−1/q
(m −1) (3.27)

= log(q −1)m − log(qm −1)+ (m −1)
(

log
q

q −1
+

log q

q −1

)

= log
(

(q −1)m

qm −1
·
(

q

q −1

)m−1

·q
m−1
q−1

)

= log

(

(q −1) ·qm−1 ·q
m−1
q−1

qm −1

)

≥ 0 (3.28)

In the above (3.27) follows from the fact that H(ρ)/ρ is decreasing5 in ρ and that ρ ≤ 1−1/q .
(3.28) follows from the the claim that

(q −1) ·q
m−1
q−1 ≥ q.

Indeed the above follows from (3.26).
Finally, note that (3.28) completes the proof.

Since (1+1/x)x ≤ e (by Lemma B.2.3), we also have that (3.26) is also satisfied for m ≥ 1+
1

ln q . Further, we note that (3.26) is satisfied for every m ≥ 2 (for any q ≥ 3), which leads to the
following (also see Exercise 3.5):

Corollary 3.3.4. Let q ≥ 3 be an integer and let 0 ≤ ρ ≤ 1−1/q, then for any m ≥ 2, we have

Hq (ρ) ≥ Hqm (ρ).

Next, we look at the entropy function when its input is very close to 1.

Proposition 3.3.5. For small enough ε> 0,

Hq

(

1−
1
q
−ε

)

≤ 1− cqε
2,

where cq is a constant that only depends on q.

Proof. The intuition behind the proof is the following. Since the derivative of Hq (x) is zero at
x = 1−1/q , in the Taylor expansion of Hq (1−1/q −ε) the ε term will vanish. We will now make
this intuition more concrete. We will think of q as fixed and 1/ε as growing. In particular, we
will assume that ε< 1/q . Consider the following equalities:

Hq (1−1/q −ε) = −
(

1−
1
q
−ε

)

logq

(
1−1/q −ε

q −1

)

−
(

1
q
+ε

)

logq

(
1
q
+ε

)

5Indeed, H(ρ)/ρ = log(1/ρ)− (1/ρ−1)log(1−ρ). Note that the first term is deceasing in ρ. We claim that the
second term is also decreasing in ρ– this e.g. follows from the observation that −(1/ρ− 1)ln(1−ρ) = (1−ρ)(1+
ρ/2!+ρ2/3!+·· · ) = 1−ρ/2−ρ2(1/2−1/3!)− · · · is also decreasing in ρ.
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= − logq

(
1
q

(

1−
εq

q −1

))

+
(

1
q
+ε

)

logq

(
1− (εq)/(q −1)

1+εq

)

= 1−
1

ln q

[

ln
(

1−
εq

q −1

)

−
(

1
q
+ε

)

ln
(

1− (εq)/(q −1)
1+εq

)]

= 1+o(ε2)−
1

ln q

[

−
εq

q −1
−

ε2q2

2(q −1)2 −
(

1
q
+ε

)(

−
εq

q −1

−
ε2q2

2(q −1)2 −εq +
ε2q2

2

)]

(3.29)

= 1+o(ε2)−
1

ln q

[

−
εq

q −1
−

ε2q2

2(q −1)2

−
(

1
q
+ε

)(

−
εq2

q −1
+
ε2q3(q −2)

2(q −1)2

)]

= 1+o(ε2)−
1

ln q

[

−
ε2q2

2(q −1)2 +
ε2q2

q −1
−
ε2q2(q −2)

2(q −1)2

]

(3.30)

= 1−
ε2q2

2ln q(q −1)
+o(ε2)

≤ 1−
ε2q2

4ln q(q −1)

(3.31)

(3.29) follows from the fact that for |x| < 1, ln(1+ x) = x − x2/2+ x3/3− . . . (Lemma B.2.2) and
by collecting the ε3 and smaller terms in o(ε2). (3.30) follows by rearranging the terms and by
absorbing the ε3 terms in o(ε2). The last step is true assuming ε is small enough.

Next, we look at the entropy function when its input is very close to 0.

Proposition 3.3.6. For small enough ε> 0,

Hq (ε) =Θ

(
1

log q
·ε log

(
1
ε

))

.

Proof. By definition

Hq (ε) = ε logq (q −1)+ε logq (1/ε)+ (1−ε) logq (1/(1−ε)).

Since all the terms in the RHS are positive we have

Hq (ε) ≥ ε log(1/ε)/ log q. (3.32)

Further, by Lemma B.2.2, (1−ε) logq (1/(1−ε)) ≤ 2ε/ln q for small enough ε. Thus, this implies
that

Hq (ε) ≤
2+ ln(q −1)

ln q
·ε+

1
ln q

·ε ln
(

1
ε

)

. (3.33)

(3.32) and (3.33) proves the claimed bound.
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We will also work with the inverse of the q-ary entropy function. Note that Hq (·) on the
domain [0,1−1/q] is an bijective map into [0,1]. Thus, we define H−1

q (y) = x such that Hq (x) = y

and 0 ≤ x ≤ 1−1/q . Finally, we will need the following lower bound.

Lemma 3.3.7. For every 0 ≤ y ≤ 1−1/q and for every small enough ε> 0,

H−1
q (y −ε2/c ′q ) ≥ H−1

q (y)−ε,

where c ′q ≥ 1 is a constant that depends only on q.

Proof. It is easy to check that H−1
q (y) is a strictly increasing convex function in the range y ∈

[0,1]. This implies that the derivative of H−1
q (y) increases with y . In particular, (H−1

q )′(1) ≥
(H−1

q )′(y) for every 0 ≤ y ≤ 1. In other words, for every 0 < y ≤ 1, and (small enough) δ > 0,
H−1

q (y)−H−1
q (y−δ)

δ ≤
H−1

q (1)−H−1
q (1−δ)

δ . Proposition 3.3.5 along with the facts that H−1
q (1) = 1− 1/q

and H−1
q is increasing completes the proof if one picks c ′q = max(1,1/cq ) and δ= ε2/c ′q .

3.4 Exercises

Exercise 3.1. Prove Lemma 3.1.1.

Exercise 3.2. Prove Lemma 3.1.5.

Exercise 3.3. Prove Lemma 3.1.7.

Exercise 3.4. Let P denote the property that the randomly chosen C satisfies f (C ) ≤ b. Then
E[ f (C )] ≤ b implies that Pr[C has property P ] > 0.

Exercise 3.5. Show that for any Q ≥ q ≥ 2 and ρ ≤ 1−1/q , we have HQ (ρ) ≤ Hq (ρ).

3.5 Bibliographic Notes

Shannon was one of the very early adopters of probabilistic method (and we will see one such
use in Chapter 6). Later, the probabilistic method was popularized Erdős. For more on proba-
bilistic method, see the book by Alon and Spencer [1].

Proofs of various concentration bounds can e.g. be found in [13].
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