
Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-
ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY
and by Madhu Sudan at MIT.

This version is dated May 8, 2015. For the latest version, please go to

http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under
CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2013.
This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444
Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 5

The Greatest Code of Them All:

Reed-Solomon Codes

In this chapter, we will study the Reed-Solomon codes. Reed-Solomon codes have been studied
a lot in coding theory. These codes are optimal in the sense that they meet the Singleton bound
(Theorem 4.3.1). We would like to emphasize that these codes meet the Singleton bound not
just asymptotically in terms of rate and relative distance but also in terms of the dimension,
block length and distance. As if this were not enough, Reed-Solomon codes turn out to be more
versatile: they have many applications outside of coding theory. (We will see some applications
later in the book.)

These codes are defined in terms of univariate polynomials (i.e. polynomials in one un-
known/variable) with coefficients from a finite field Fq . It turns out that polynomials over Fp ,
for prime p, also help us define finite fields Fps , for s > 1. To kill two birds with one stone1, we
first do a quick review of polynomials over finite fields. Then we will define and study some
properties of Reed-Solomon codes.

5.1 Polynomials and Finite Fields

We begin with the formal definition of a (univariate) polynomial.

Definition 5.1.1. Let Fq be a finite field with q elements. Then a function F (X) =
∑∞

i=0 fi X i , fi ∈
Fq is called a polynomial.

For our purposes, we will only consider the finite case; that is, F (X) =
∑d

i=0 fi X i for some
integer d > 0, with coefficients fi ∈ Fq , and fd ̸= 0. For example, 2X 3+X 2+5X +6 is a polynomial
over F7.

Next, we define some useful notions related to polynomials. We begin with the notion of
degree of a polynomial.

1No birds will be harmed in this exercise.

93

Definition 5.1.2. For F (X) =
∑d

i=0 fi X i (fd ̸= 0), we call d the degree of F (X). We denote the
degree of the polynomial F (X) by deg(F).

For example, 2X 3 +X 2 +5X +6 has degree 3.
Let Fq [X] be the set of polynomials over Fq , that is, with coefficients from Fq . Let F (X),G(X) ∈

Fq [X] be polynomials. Then Fq [X] has the following natural operations defined on it:

Addition:

F (X)+G(X) =
max(deg(F),deg(G))∑

i=0
(fi + gi)X i ,

where the addition on the coefficients is done over Fq . For example, over F2, X + (1+X) =
X · (1+1)+1 · (0+1)1 = 1 (recall that over F2, 1+1 = 0).2

Multiplication:

F (X) ·G(X) =
deg(F)+deg(G)∑

i=0

(
min(i ,deg(F))∑

j=0
p j ·qi− j

)

X i ,

where all the operations on the coefficients are over Fq . For example, over F2, X (1+ X) =
X +X 2; (1+X)2 = 1+2X +X 2 = 1+X 2, where the latter equality follows since 2 ≡ 0 mod 2.

Next, we define the notion of a root of a polynomial.

Definition 5.1.3. α ∈ Fq is a root of a polynomial F (X) if F (α) = 0.

For instance, 1 is a root of 1+X 2 over F2.
We will also need the notion of a special class of polynomials, which are like prime numbers

for polynomials.

Definition 5.1.4. A polynomial F (X) is irreducible if for every G1(X),G2(X) such that F (X) =
G1(X)G2(X), we have min(deg(G1),deg(G2)) = 0

For example, 1+X 2 is not irreducible over F2, as (1+X)(1+X) = 1+X 2. However, 1+X +X 2

is irreducible, since its non-trivial factors have to be from the linear terms X or X +1. However,
it is easy to check that neither is a factor of 1+ X + X 2. (In fact, one can show that 1+ X + X 2

is the only irreducible polynomial of degree 2 over F2– see Exercise 5.1.) A word of caution: if a
polynomial E(X) ∈ Fq [X] does not have any root in Fq , it does not mean that E(X) is irreducible.
For example consider the polynomial (1+ X + X 2)2 over F2– it does not have any root in F2 but
it obviously is not irreducible.

Just as the set of integers modulo a prime is a field, so is the set of polynomials modulo an
irreducible polynomial:

Theorem 5.1.1. Let E(X) be an irreducible polynomial with degree ≥ 2 over Fp , p prime. Then

the set of polynomials in Fp [X] modulo E(X), denoted by Fp [X]/E(X), is a field.

2This will be a good time to remember that operations over a finite field are much different from operations over
integers/reals. For example, over reals/integers X + (X +1) = 2X +1.

94

The proof of the theorem above is similar to the proof of Lemma 2.1.2, so we only sketch the
proof here. In particular, we will explicitly state the basic tenets of Fp [X]/E(X).

• Elements are polynomials in Fp [X] of degree at most s − 1. Note that there are ps such
polynomials.

• Addition: (F (X)+G(X)) mod E(X) = F (X) mod E(X)+G(X) mod E(X) = F (X)+G(X).
(Since F (X) and G(X) are of degree at most s−1, addition modulo E(X) is just plain simple
polynomial addition.)

• Multiplication: (F (X) ·G(X)) mod E(X) is the unique polynomial R(X) with degree at
most s −1 such that for some A(X), R(X)+ A(X)E(X) = F (X) ·G(X)

• The additive identity is the zero polynomial, and the additive inverse of any element F (X)
is −F (X).

• The multiplicative identity is the constant polynomial 1. It can be shown that for every
element F (X), there exists a unique multiplicative inverse (F (X))−1.

For example, for p = 2 and E(X) = 1+X +X 2, F2[X]/(1+X +X 2) has as its elements {0,1, X ,1+
X }. The additive inverse of any element in F2[X]/(1+ X + X 2) is the element itself while the
multiplicative inverses of 1, X and 1+X are 1,1+X and X respectively.

A natural question to ask is if irreducible polynomials exist. Indeed, they do for every degree:

Theorem 5.1.2. For all s ≥ 2 and Fp , there exists an irreducible polynomial of degree s over Fp . In

fact, the number of such irreducible polynomials is Θ

(
ps

s

)

.3

Given any monic 4 polynomial E(X) of degree s, it can be verified whether it is an irreducible
polynomial by checking if gcd(E(X), X qs

− X) = E(X). This is true as the product of all monic
irreducible polynomials in Fq [X] of degree exactly s is known to be the polynomial X qs

− X .
Since Euclid’s algorithm for computing the gcd(F (X),G(X)) can be implemented in time poly-
nomial in the minimum of deg(F) and deg(G) and log q (see Section D.7.2), this implies that
checking whether a given polynomial of degree s over Fq [X] is irreducible can be done in time
poly(s, log q).

This implies an efficient Las Vegas algorithm5 to generate an irreducible polynomial of de-
gree s over Fq . Note that the algorithm is to keep on generating random polynomials until it
comes across an irreducible polynomial (Theorem 5.1.2 implies that the algorithm will check
O(s) polynomials in expectation). Algorithm 7 presents the formal algorithm.

The above discussion implies the following:

3The result is true even for general finite fields Fq and not just prime fields but we stated the version over prime
fields for simplicity.

4I.e. the coefficient of the highest degree term is 1. It is easy to check that if E(X) = es X s + es−1X s−1 +·· ·+1 is
irreducible, then e−1

s ·E(X) is also an irreducible polynomial.
5A Las Vegas algorithm is a randomized algorithm which always succeeds and we consider its time complexity

to be its expected worst-case run time.

95

Algorithm 7 Generating Irreducible Polynomial
INPUT: Prime power q and an integer s > 1
OUTPUT: A monic irreducible polynomial of degree s over Fq

1: b ← 0
2: WHILE b = 0 DO

3: F (X) ← X s +
∑s−1

i=0 fi X i , where each fi is chosen uniformly at random from Fq .
4: IF gcd(F (X), X qs

−X) = F (X) THEN

5: b ← 1.
6: RETURN F (X)

Corollary 5.1.3. There is a Las Vegas algorithm to generate an irreducible polynomial of degree s

over any Fq in expected time poly(s, log q).

Now recall that Theorem 2.1.3 states that for every prime power ps , there a unique field Fps .
This along with Theorems 5.1.1 and 5.1.2 imply that:

Corollary 5.1.4. The field Fps is Fp [X]/E(X), where E(X) is an irreducible polynomial of degree

s.

5.2 Reed-Solomon Codes

Recall that the Singleton bound (Theorem 4.3.1) states that for any (n,k,d)q code, k ≤ n−d +1.
Next, we will study Reed-Solomon codes, which meet the Singleton bound, i.e. satisfy k = n −
d +1 (but have the unfortunate property that q ≥ n). Note that this implies that the Singleton
bound is tight, at least for q ≥ n.

We begin with the definition of Reed-Solomon codes.

Definition 5.2.1 (Reed-Solomon code). Let Fq be a finite field. Let α1,α2, ...αn be distinct el-
ements (also called evaluation points) from Fq and choose n and k such that k ≤ n ≤ q . We
define an encoding function for Reed-Solomon code as RS : Fk

q → Fn
q as follows. A message

m = (m0,m1, ...,mk−1) with mi ∈ Fq is mapped to a degree k −1 polynomial.

m *→ fm(X),

where

fm(X) =
k−1∑

i=0
mi X i . (5.1)

Note that fm(X) ∈ Fq [X] is a polynomial of degree at most k − 1. The encoding of m is the
evaluation of fm(X) at all the αi ’s :

RS(m) =
(

fm(α1), fm(α2), ..., fm(αn)
)

.

We call this image Reed-Solomon code or RS code. A common special case is n = q −1 with the

set of evaluation points being F∗
def= F\ {0}.

96

For example, the first row below are all the codewords in the [3,2]3 Reed-Solomon codes
where the evaluation points are F3 (and the codewords are ordered by the corresponding mes-
sages from F2

3 in lexicographic order where for clarity the second row shows the polynomial
fm(X) for the corresponding m ∈ F2

3):

(0,0,0), (1,1,1), (2,2,2), (0,1,2), (1,2,0), (2,0,1), (0,2,1), (1,0,2), (2,1,0)
0, 1, 2, X, X+1, X+2, 2X, 2X+1, 2X+2

Notice that by definition, the entries in {α1, ...,αn} are distinct and thus, must have n ≤ q .
We now turn to some properties of Reed-Solomon codes.

Claim 5.2.1. RS codes are linear codes.

Proof. The proof follows from the fact that if a ∈ Fq and f (X), g (X) ∈ Fq [X] are polynomials of
degree ≤ k−1, then a f (X) and f (X)+g (X) are also polynomials of degree ≤ k−1. In particular,
let messages m1 and m2 be mapped to fm1 (X) and fm2 (X) where fm1 (X), fm2 (X) ∈ Fq [X] are
polynomials of degree at most k −1 and because of the mapping defined in (5.1), it is easy to
verify that:

fm1 (X)+ fm2 (X) = fm1+m2 (X),

and
a fm1 (X) = fam1 (X).

In other words,
RS(m1)+RS(m2) = RS(m1 +m2)

aRS(m1) = RS(am1).

Therefore RS is a [n,k]q linear code.

The second and more interesting claim is the following:

Claim 5.2.2. RS is a [n,k,n −k +1]q code. That is, it matches the Singleton bound.

The claim on the distance follows from the fact that every non-zero polynomial of degree
k −1 over Fq [X] has at most k −1 (not necessarily distinct) roots, and that if two polynomials
agree on more than k −1 places then they must be the same polynomial.

Proposition 5.2.3 (“Degree Mantra"). A nonzero polynomial f (X) of degree t over a field Fq has

at most t roots in Fq

Proof. We will prove the theorem by induction on t . If t = 0, we are done. Now, consider f (X)
of degree t > 0. Let α ∈ Fq be a root such that f (α) = 0. If no such root α exists, we are done. If
there is a root α, then we can write

f (X) = (X −α)g (X)

where deg(g) = deg(f)− 1 (i.e. X −α divides f (X)). Note that g (X) is non-zero since f (X) is
non-zero. This is because by the fundamental rule of division of polynomials:

f (X) = (X −α)g (X)+R(X)

97

where deg(R) ≤ 0 (as the degree cannot be negative this in turn implies that deg(R) = 0) and
since f (α) = 0,

f (α) = 0+R(α),

which implies that R(α) = 0. Since R(X) has degree zero (i.e. it is a constant polynomial), this
implies that R(X) ≡ 0.

Finally, as g (X) is non-zero and has degree t −1, by induction, g (X) has at most t −1 roots,
which implies that f (X) has at most t roots.

We are now ready to prove Claim 5.2.2

Proof of Claim 5.2.2. We start by proving the claim on the distance. Fix arbitrary m1 ̸= m2 ∈
Fk

q . Note that fm1 (X), fm2 (X) ∈ Fq [X] are distinct polynomials of degree at most k − 1 since

m1 ̸= m2 ∈ Fk
q . Then fm1 (X)− fm2 (X) ̸= 0 also has degree at most k −1. Note that w t (RS(m2)−

RS(m1)) =∆(RS(m1),RS(m2)). The weight of RS(m2)−RS(m1) is n minus the number of zeroes
in RS(m2)−RS(m1), which is equal to n minus the number of roots that fm1 (X)− fm2 (X) has
among {α1, ...,αn}. That is,

∆(RS(m1),RS(m2)) = n − |{αi | fm1 (αi) = fm2 (αi)}|.

By Proposition 5.2.3, fm1 (X)− fm2 (X) has at most k − 1 roots. Thus, the weight of RS(m2)−
RS(m1) is at least n − (k −1) = n −k +1. Therefore d ≥ n −k +1, and since the Singleton bound
(Theorem 4.3.1) implies that d ≤ n−k+1, we have d = n−k+1.6 The argument above also shows
that distinct polynomials fm1 (X), fm2 (X) ∈ Fq [X] are mapped to distinct codewords. (This is
because the Hamming distance between any two codewords is at least n −k +1 ≥ 1, where the
last inequality follows as k ≤ n.) Therefore, the code contains qk codewords and has dimension
k. The claim on linearity of the code follows from Claim 5.2.1. ✷

Recall that the Plotkin bound (Corollary 4.4.2) implies that to achieve the Singleton bound,
the alphabet size cannot be a constant. Thus, some dependence of q on n in Reed-Solomon
codes is unavoidable.

Let us now find a generator matrix for RS codes (which exists by Claim 5.2.1). By Defi-
nition 5.2.1, any basis fm1 , ..., fmk

of polynomial of degree at most k − 1 gives rise to a basis
RS(m1), ...,RS(mk) of the code. A particularly nice polynomial basis is the set of monomials
1, X , ..., X i , ..., X k−1. The corresponding generator matrix, whose i th row (numbering rows from
0 to k −1) is

(αi
1,αi

2, ...,αi
j , ...,αi

n)

and this generator matrix is called the Vandermonde matrix of size k ×n:

6See Exercise 5.2 for an alternate direct argument.

98

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1
α1 α2 · · · α j · · · αn

α2
1 α2

2 · · · α2
j · · · α2

n
...

...
. . .

...
. . .

...
αi

1 αi
2 · · · αi

j · · · αi
n

...
...

. . .
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
j · · · αk−1

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The class of codes that match the Singleton bound have their own name, which we define
and study next.

5.3 A Property of MDS Codes

Definition 5.3.1 (MDS codes). An (n,k,d)q code is called Maximum Distance Separable (MDS)

if d = n −k +1.

Thus, Reed-Solomon codes are MDS codes.
Next, we prove an interesting property of an MDS code C ⊆ Σ

n with integral dimension k.
We begin with the following notation.

Definition 5.3.2. For any subset of indices S ⊆ [n] of size exactly k and a code C ⊆Σ
n , CS is the

set of all codewords in C projected onto the indices in S.

MDS codes have the following nice property that we shall prove for the special case of Reed-
Solomon codes first and subsequently for the general case as well.

Proposition 5.3.1. Let C ⊆ Σ
n of integral dimension k be an MDS code, then for all S ⊆ [n] such

that |S| = k, we have |CS | =Σ
k .

Before proving Proposition 5.3.1 in its full generality, we present its proof for the special case of
Reed-Solomon codes.
Consider any S ⊆ [n] of size k and fix an arbitrary v = (v1, . . . , vk) ∈ Fk

q , we need to show that
there exists a codeword c ∈ RS (assume that the RS code evaluates polynomials of degree at
most k − 1 over α1, . . . ,αn ⊆ Fq) such that cS = v. Consider a generic degree k − 1 polynomial
F (X) =

∑k−1
i=0 fi X i . Thus, we need to show that there exists F (X) such that F (αi) = vi for all i ∈

S, where |S| = k.

For notational simplicity, assume that S = [k]. We think of fi ’s as unknowns in the equations
that arise out of the relations F (αi) = vi . Thus, we need to show that there is a solution to the
following system of linear equations:

99

(

p0 p1 · · · pk−1
)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1
α1 αi αk

α2
1 α2

i α2
k

...
...

...
αk−1

1 αk−1
i αk−1

k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1

v2

v3
...

vk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The above constraint matrix is a Vandermonde matrix and is known to have full rank (see Ex-
ercise 5.6). Hence, by Exercise 2.5, there always exists a unique solution for (p0, . . . , pk−1). This
completes the proof for Reed-Solomon codes.

Next, we prove the property for the general case which is presented below

Proof of Proposition 5.3.1. Consider a |C |×n matrix where each row represents a codeword
in C . Hence, there are |C | = |Σ|k rows in the matrix. The number of columns is equal to the
block length n of the code. Since C is Maximum Distance Separable, its distance d = n −k +1.

Let S ⊆ [n] be of size exactly k. It is easy to see that for any ci ̸= c j ∈ C , the corresponding
projections ci

S and c
j
S ∈CS are not the same. As otherwise △(ci ,c j) ≤ d −1, which is not possible

as the minimum distance of the code C is d . Therefore, every codeword in C gets mapped to a
distinct codeword in CS . As a result, |CS | = |C | = |Σ|k . As CS ⊆ Σ

k , this implies that CS = Σ
k , as

desired. ✷

Proposition 5.3.1 implies an important property in pseudorandomness: see Exercise 5.7 for
more.

5.4 Exercises

Exercise 5.1. Prove that X 2 +X +1 is the unique irreducible polynomial of degree two over F2.

Exercise 5.2. For any [n,k]q Reed-Solomon code, exhibit two codewords that are at Hamming
distance exactly n −k +1.

Exercise 5.3. Let RSF∗q
[n,k] denote the Reed-Solomon code over Fq where the evaluation points

is Fq (i.e. n = q). Prove that
(

RSFq [n,k]
)⊥

= RSFq [n,n −k],

that is, the dual of these Reed-Solomon codes are Reed-Solomon codes themselves. Conclude
that Reed-Solomon codes contain self-dual codes (see Exercise 2.29 for a definition).

Hint: Exercise 2.2 might be useful.

Exercise 5.4. Since Reed-Solomon codes are linear codes, by Proposition 2.3.3, one can do error
detection for Reed-Solomon codes in quadratic time. In this problem, we will see that one can
design even more efficient error detection algorithm for Reed-Solomon codes. In particular, we

100

will consider data streaming algorithms (see Section 20.5 for more motivation on this class of al-
gorithms). A data stream algorithm makes a sequential pass on the input, uses poly-logarithmic
space and spend only poly-logarithmic time on each location in the input. In this problem we
show that there exists a randomized data stream algorithm to solve the error detection problem
for Reed-Solomon codes.

1. Give a randomized data stream algorithm that given as input y ∈ Fm
q decides whether y = 0

with probability at least 2/3. Your algorithm should use O(log qm) space and polylog(qm)
time per position of y. For simplicity, you can assume that given an integer t ≥ 1 and
prime power q , the algorithm has oracle access to an irreducible polynomial of degree t

over Fq .
Hint: Use Reed-Solomon codes.

2. Given [q,k]q Reed-Solomon code C (i.e. with the evaluation points being Fq), present a
data stream algorithm for error detection of C with O(log q) space and polylogq time per
position of the received word. The algorithm should work correctly with probability at
least 2/3. You should assume that the data stream algorithm has access to the values of k

and q (and knows that C has Fq as its evaluation points).
Hint: Part 1 and Exercise 5.3 should be helpful.

Exercise 5.5. We have defined Reed-Solomon in this chapter and Hadamard codes in Section 2.7.
In this problem we will prove that certain alternate definitions also suffice.

1. Consider the Reed-Solomon code over a field Fq and block length n = q −1 defined as

RSF∗q
[n,k,n −k +1] = {(p(1), p(α), . . . , p(αn−1)) | p(X) ∈ F[X] has degree ≤ k −1}

where α is the generator of the multiplicative group F∗ of F.7

Prove that

RSF∗q
[n,k,n −k +1] = {(c0,c1, . . . ,cn−1) ∈ Fn | c(αℓ) = 0 for 1 ≤ ℓ≤ n −k ,

where c(X) = c0 + c1X +·· ·+ cn−1X n−1} . (5.2)

Hint: Exercise 2.2 might be useful.

2. Recall that the [2r ,r,2r−1]2 Hadamard code is generated by the r ×2r matrix whose i th (for
0 ≤ i ≤ 2r −1) column is the binary representation of i . Briefly argue that the Hadamard
codeword for the message (m1,m2, . . . ,mr) ∈ {0,1}r is the evaluation of the (multivariate)
polynomial m1X1 +m2X2 + ·· · +mr Xr (where X1, . . . , Xr are the r variables) over all the
possible assignments to the variables (X1, . . . , Xr) from {0,1}r .

Using the definition of Hadamard codes above (re)prove the fact that the code has dis-
tance 2r−1.

7This means that F∗q = {1,α, . . . ,αn−1}. Further, αn = 1.

101

Exercise 5.6. Prove that the k ×k Vandermonde matrix (where the (i , j)th entry is αi
j) has full

rank (where α1, . . . ,αk are distinct).

Exercise 5.7. A set S ⊆ Fn
q is said to be a t-wise independent source (for some 1 ≤ t ≤ n) if given a

uniformly random sample (X1, . . . , Xn) from S, the n random variables are t-wise independent:
i.e. any subset of t variables are uniformly independent random variables over Fq . We will
explore properties of these objects in this exercise.

1. Argue that the definition of t-wise independent source is equivalent to the definition in
Exercise 2.12.

2. Argue that any [n,k]q code C is an 1-wise independent source.

3. Prove that any [n,k]q MDS code is a k-wise independent source.

4. Using part 3 or otherwise prove that there exists a k-wise independent source over F2 of
size at most (2n)k . Conclude that k(log2 n +1) uniformly and independent random bits
are enough to compute n random bits that are k-wise independent.

5. For 0 < p ≤ 1/2, we say the n binary random variables X1, . . . , Xn are p-biased and t-
wise independent if any of the t random variables are independent and Pr[Xi = 1] = p

for every i ∈ [n]. For the rest of the problem, let p be a power of 1/2. Then show that
any t · log2(1/p)-wise independent random variables can be converted into t-wise in-
dependent p-biased random variables. Conclude that one can construct such sources
with k log2(1/p)(1 + log2 n) uniformly random bits. Then improve this bound to k(1 +
max(log2(1/p), log2 n)) uniformly random bits.

Exercise 5.8. In many applications, errors occur in “bursts"– i.e. all the error locations are con-
tained in a contiguous region (think of a scratch on a DVD or disk). In this problem we will use
how one can use Reed-Solomon codes to correct bursty errors.

An error vector e ∈ {0,1}n is called a t-single burst error pattern if all the non-zero bits in e

occur in the range [i , i + t −1] for some 1 ≤ i ≤ n = t +1. Further, a vector e ∈ {0,1}n is called a
(s, t)-burst error pattern if it is the union of at most s t-single burst error pattern (i.e. all non-
zero bits in e are contained in one of at most s contiguous ranges in [n]).

We call a binary code C ⊆ {0,1}n to be (s, t)-burst error correcting if one can uniquely decode
from any (s, t)-burst error pattern. More precisely, given an (s, t)-burst error pattern e and any
codeword c ∈ C , the only codeword c′ ∈ C such that (c+ e)− c′ is an (s, t)-burst error pattern
satisfies c′ = c.

1. Argue that if C is (st)-error correcting (in the sense of Definition 1.3.3), then it is also (s, t)-
burst error correcting. Conclude that for any ε > 0, there exists code with rate Ω(ε2) and
block length n that is (s, t)-burst error correcting for any s, t such that s · t ≤

(1
4 −ε

)

·n.

2. Argue that for any rate R > 0 and for large enough n, there exist (s, t)-burst error correcting

as long as s·t ≤
(1−R−ε

2

)

·n and t ≥Ω

(
logn
ε

)

. In particular, one can correct from 1
2−ε fraction

of burst-errors (as long as each burst is “long enough") with rate Ω(ε) (compare this with

102

item 1).
Hint: Use Reed-Solomon codes.

Exercise 5.9. In this problem we will look at a very important class of codes called BCH codes8.
Let F= F2m . Consider the binary code CBCH defined as RSF[n,k,n −k +1]∩Fn

2 .

1. Prove that CBCH is a binary linear code of distance at least d = n −k +1 and dimension at
least n − (d −1)log2(n +1).

Hint: Use the characterization (5.2) of the Reed-Solomon code from Exercise 5.5.

2. Prove a better lower bound of n −
⌈

d−1
2

⌉

log2(n +1) on the dimension of CBCH.

Hint: Try to find redundant checks amongst the “natural” parity checks defining CBCH).

3. For d = 3, CBCH is the same as another code we have seen. What is that code?

4. For constant d (and growing n), prove that CBCH have nearly optimal dimension for dis-
tance d , in that the dimension cannot be n − t log2(n +1) for t < d−1

2 .

Exercise 5.10. In this exercise, we continue in the theme of Exercise 5.9 and look at the intersec-
tion of a Reed-Solomon code with Fn

2 to get a binary code. Let F= F2m . Fix positive integers d ,n

with (d −1)m < n < 2m , and a set S = {α1,α2, . . . ,αn} of n distinct nonzero elements of F. For a
vector v = (v1, . . . , vn) ∈ (F∗)n of n not necessarily distinct nonzero elements from F, define the
Generalized Reed-Solomon code GRSS,v,d as follows:

GRSS,v,d = {(v1p(α1), v2p(α2), . . . , vn p(αn)) | p(X) ∈ F[X] has degree ≤ n −d} .

1. Prove that GRSS,v,d is an [n,n −d +1,d]F linear code.

2. Argue that GRSS,v,d ∩Fn
2 is a binary linear code of rate at least 1− (d−1)m

n .

3. Let c ∈ Fn
2 be a nonzero binary vector. Prove that (for every choice of d ,S) there are at most

(2m −1)n−d+1 choices of the vector v for which c ∈ GRSS,v,d .

4. Using the above, prove that if the integer D satisfies Vol2(n,D − 1) < (2m − 1)d−1 (where
Vol2(n,D −1) =

∑D−1
i=0

(n
i

)

), then there exists a vector v ∈ (F∗)n such that the minimum dis-
tance of the binary code GRSS,v,d ∩Fn

2 is at least D .

5. Using parts 2 and 4 above (or otherwise), argue that the family of codes GRSS,v,d ∩ Fn
2

contains binary linear codes that meet the Gilbert-Varshamov bound.

8The acronym BCH stands for Bose-Chaudhuri-Hocquenghem, the discoverers of this family of codes.

103

Exercise 5.11. In this exercise we will show that the dual of a GRS code is a GRS itself with dif-
ferent parameters. First, we state the obvious definition of GRS codes over a general finite field
Fq (as opposed to the definition over fields of characteristic two in Exercise 5.10). In particular,
define the code GRSS,v,d ,q as follows:

GRSS,v,d ,q = {(v1p(α1), v2p(α2), . . . , vn p(αn)) | p(X) ∈ Fq [X] has degree ≤ n −d} .

Then show that
(

GRSS,v,d ,q
)⊥ = GRSS,v′,n−d+2,q ,

where v′ ∈ Fn
q is a vector with all non-zero components.

Exercise 5.12. In Exercise 2.15, we saw that any linear code can be converted in to a systematic
code. In other words, there is a map to convert Reed-Solomon codes into a systematic one. In
this exercise the goal is to come up with an explicit encoding function that results in a systematic
Reed-Solomon code.

In particular, given the set of evaluation points α1, . . . ,αn , design an explicit map f from
Fk

q to a polynomial of degree at most k − 1 such that the following holds. For every message

m ∈ Fk
q , if the corresponding polynomial is fm(X), then the vector

(

fm(αi)
)

i∈[n] has the message
m appear in the corresponding codeword (say in its first k positions). Further, argue that this
map results in an [n,k,n −k +1]q code.

Exercise 5.13. In this problem, we will consider the number-theoretic counterpart of Reed-
Solomon codes. Let 1 ≤ k < n be integers and let p1 < p2 < ·· · < pn be n distinct primes.
Denote K =

∏k
i=1 pi and N =

∏n
i=1 pi . The notation ZM stands for integers modulo M , i.e.,

the set {0,1, . . . , M − 1}. Consider the Chinese Remainder code defined by the encoding map
E : ZK →Zp1 ×Zp2 × · · ·×Zpn defined by:

E(m) = (m mod p1, m mod p2, · · · , m mod pn) .

(Note that this is not a code in the usual sense we have been studying since the symbols at
different positions belong to different alphabets. Still notions such as distance of this code make
sense and are studied in the question below.)

Suppose that m1 ̸= m2. For 1 ≤ i ≤ n, define the indicator variable bi = 1 if E(m1)i ̸= E(m2)i

and bi = 0 otherwise. Prove that
∏n

i=1 pbi

i > N /K .
Use the above to deduce that when m1 ̸= m2, the encodings E(m1) and E(m2) differ in at

least n −k +1 locations.

Exercise 5.14. In this problem, we will consider derivatives over a finite field Fq . Unlike the case
of derivatives over reals, derivatives over finite fields do not have any physical interpretation
but as we shall see shortly, the notion of derivatives over finite fields is still a useful concept. In
particular, given a polynomial f (X) =

∑t
i=0 fi X i over Fq , we define its derivative as

f ′(X) =
t−1∑

i=0
(i +1) · fi+1 ·X i .

Further, we will denote by f (i)(X), the result of applying the derivative on f i times. In this
problem, we record some useful facts about derivatives.

104

1. Define R(X , Z) = f (X +Z) =
∑t

i=0 ri (X) ·Z i . Then for any j ≥ 1,

f (j)(X) = j ! · r j (X).

2. Using part 1 or otherwise, show that for any j ≥ char(Fq),9 f (j)(X) ≡ 0.

3. Let j ≤ char(Fq). Further, assume that for every 0 ≤ i < j , f (i)(α) = 0 for some α ∈ Fq . Then
prove that (X −α) j divides f (X).

4. Finally, we will prove the following generalization of the degree mantra (Proposition 5.2.3).
Let f (X) be a non-zero polynomial of degree t and m ≤ char(Fq). Then there exists at most
⌊

t
m

⌋

distinct elements α ∈ Fq such that f (j)(α) = 0 for every 0 ≤ j < m.

Exercise 5.15. In this exercise, we will consider a code that is related to Reed-Solomon codes
and uses derivatives from Exercise 5.14. These codes are called derivative codes.

Let m ≥ 1 be an integer parameter and consider parameters k > char(Fq) and n such that
m < k < nm. Then the derivative code with parameters (n,k,m) is defined as follow. Consider
any message m ∈ Fk

q and let fm(X) be the message polynomial as defined for the Reed-Solomon
code. Let α1, . . . ,αn ∈ Fq be distinct elements. Then the codeword for m is given by

⎛

⎜
⎜
⎜
⎜
⎝

fm(α1) fm(α2) · · · fm(αn)
f (1)

m (α1) f (1)
m (α2) · · · f (1)

m (αn)
...

...
...

...
f (m−1)

m (α1) f (m−1)
m (α2) · · · f (m−1)

m (αn)

⎞

⎟
⎟
⎟
⎟
⎠

.

Prove that the above code is an
[

n, k
m ,n −

⌊
k−1

m

⌋]

qm
-code (and is thus MDS).

Exercise 5.16. In this exercise, we will consider another code related to Reed-Solomon codes
that are called Folded Reed-Solomon codes. We will see a lot more of these codes in Chapter 17.

Let m ≥ 1 be an integer parameter and let α1, . . . ,αn ∈ Fq are distinct elements such that for
some element γ ∈ F∗q , the sets

{αi ,αiγ,αiγ
2, . . . ,αiγ

m−1}, (5.3)

are pair-wise disjoint for different i ∈ [n]. Then the folded Reed-Solomon code with parameters
(m,k,n,γ,α1, . . . ,αn) is defined as follows. Consider any message m ∈ Fk

q and let fm(X) be the
message polynomial as defined for the Reed-Solomon code. Then the codeword for m is given
by:

⎛

⎜
⎜
⎜
⎝

fm(α1) fm(α2) · · · fm(αn)
fm(α1 ·γ) fm(α2 ·γ) · · · fm(αn ·γ)

...
...

...
...

fm(α1 ·γm−1) fm(α2 ·γm−1) · · · fm(αn ·γm−1)

⎞

⎟
⎟
⎟
⎠

.

Prove that the above code is an
[

n, k
m ,n −

⌊
k−1

m

⌋]

qm
-code (and is thus, MDS).

9char(Fq) denotes the characteristic of Fq . That is, if q = ps for some prime p, then char(Fq) = p. Any natural
number i in Fq is equivalent to i mod char(Fq).

105

Exercise 5.17. In this problem we will see that Reed-Solomon codes, derivative codes (Exer-
cise 5.15) and folded Reed-Solomon codes (Exercise 5.16) are all essentially special cases of
a large family of codes that are based on polynomials. We begin with the definition of these
codes.

Let m ≥ 1 be an integer parameter and define m < k ≤ n. Further, let E1(X), . . . ,En(X) be
n polynomials over Fq , each of degree m. Further, these polynomials pair-wise do not have
any non-trivial factors (i.e. gcd(Ei (X),E j (X)) has degree 0 for every i ̸= j ∈ [n].) Consider any
message m ∈ Fk

q and let fm(X) be the message polynomial as defined for the Reed-Solomon
code. Then the codeword for m is given by:

(

fm(X) mod E1(X), fm(X) mod E2(X), . . . , fm(X) mod En(X)
)

.

In the above we think of fm(X) mod Ei (X) as an element of Fqm . In particular, given given a
polynomial of degree at most m −1, we will consider any bijection between the qm such poly-
nomials and Fqm . We will first see that this code is MDS and then we will see why it contains
Reed-Solomon and related codes as special cases.

1. Prove that the above code is an
[

n, k
m ,n −

⌊
k−1

m

⌋]

qm
-code (and is thus, MDS).

2. Let α1, . . . ,αn ∈ Fq be distinct elements. Define Ei (X) = X −αi . Argue that for this special
case the above code (with m = 1) is the Reed-Solomon code.

3. Let α1, . . . ,αn ∈ Fq be distinct elements. Define Ei (X) = (X −αi)m . Argue that for this
special case the above code is the derivative code (with an appropriate mapping from
polynomials of degree at most m − 1 and Fm

q , where the mapping could be different for
each i ∈ [n] and can depend on Ei (X)).

4. Let α1, . . . ,αn ∈ Fq be distinct elements and γ ∈ F∗q such that (5.3) is satisfied. Define
Ei (X) =

∏m−1
j=0 (X −αi ·γ j). Argue that for this special case the above code is the folded

Reed-Solomon code (with an appropriate mapping from polynomials of degree at most
m −1 and Fm

q , where the mapping could be different for each i ∈ [n] and can depend on
Ei (X)).

Exercise 5.18. In this exercise we will develop a sufficient condition to determine the irreducibil-
ity of certain polynomials called the Eisenstein’s criterion.

Let F (X ,Y) be a polynomial of Fq . Think of this polynomial as over X with coefficients as
polynomials in Y over Fq . Technically, we think of the coefficients as coming from the ring of
polynomials in Y over Fq . We will denote the ring of polynomials in Y over Fq as Fq (Y) and we
will denote the polynomials in X with coefficients from Fq (Y) as Fq (Y)[X].

In particular, let
F (X ,Y) = X t + ft−1(Y) ·X t−1 +·· ·+ f0(Y),

where each fi (Y) ∈ Fq (Y). Let P (Y) be a prime for Fq (Y) (i.e. P (Y) has degree at least one and
if P (Y) divides A(Y) ·B(Y) then P (Y) divides at least one of A(Y) or B(Y)). If the following
conditions hold:

106

(i) P (Y) divides fi (Y) for every 0 ≤ i < t ; but

(ii) P 2(Y) does not divide f0(Y)

then F (X ,Y) does not have any non-trivial factors over Fq (Y)[X] (i.e. all factors have either
degree t or 0 in X).

In the rest of the problem, we will prove this result in a sequence of steps:

1. For the sake of contradiction assume that F (X ,Y) =G(X ,Y) ·H(X ,Y) where

G(X ,Y) =
t1∑

i=0
gi (Y) ·X I and H(X ,Y) =

t2∑

i=0
hi (Y) ·X i ,

where 0 < t1, t2 < t . Then argue that P (Y) does not divide both of g0(Y) and h0(Y).

For the rest of the problem WLOG assume that P (Y) divides g0(Y) (and hence does not
divide h0(Y)).

2. Argue that there exists an i∗ such that P (Y) divide gi (Y) for every 0 ≤ i < i∗ but P (Y) does
not divide gi∗(Y) (define gt (Y) = 1).

3. Argue that P (Y) does not divide fi (Y). Conclude that F (X ,Y) does not have any non-
trivial factors, as desired.

Exercise 5.19. We have mentioned objects called algebraic-geometric (AG) codes, that general-
ize Reed-Solomon codes and have some amazing properties: see for example, Section 4.6. The
objective of this exercise is to construct one such AG code, and establish its rate vs distance
trade-off.

Let p be a prime and q = p2. Consider the equation

Y p +Y = X p+1 (5.4)

over Fq .

1. Prove that there are exactly p3 solutions in Fq ×Fq to (5.4). That is, if S ⊆ F2
q is defined as

S =
{

(α,β) ∈ F2
q |βp +β=αp+1

}

then |S| = p3.

2. Prove that the polynomial F (X ,Y) = Y p +Y −X p+1 is irreducible over Fq .
Hint: Exercise 5.18 could be useful.

3. Let n = p3. Consider the evaluation map ev : Fq [X ,Y] → Fn
q defined by

ev(f) = (f (α,β) : (α,β) ∈ S) .

Argue that if f ̸= 0 and is not divisible by Y p +Y −X p+1, then ev(f) has Hamming weight
at least n −deg(f)(p +1), where deg(f) denotes the total degree of f .
Hint: You are allowed to make use of Bézout’s theorem, which states that if f , g ∈ Fq [X ,Y]
are nonzero polynomials with no common factors, then they have at most deg(f)deg(g)
common zeroes.

107

4. For an integer parameter ℓ≥ 1, consider the set Fℓ of bivariate polynomials

Fℓ =
{

f ∈ Fq [X ,Y] | deg(f) ≤ ℓ,degX (f) ≤ p
}

where degX (f) denotes the degree of f in X .

Argue that Fℓ is an Fq -linear space of dimension (ℓ+1)(p +1)− p(p+1)
2 .

5. Consider the code C ⊆ Fn
q for n = p3 defined by

C =
{

ev(f) | f ∈Fℓ

}

.

Prove that C is a linear code with minimum distance at least n −ℓ(p +1).

6. Deduce a construction of an [n,k]q code with distance d ≥ n −k +1−p(p −1)/2.

(Note that Reed-Solomon codes have d = n −k +1, whereas these codes are off by p(p −
1)/2 from the Singleton bound. However they are much longer than Reed-Solomon codes,
with a block length of n = q3/2, and the deficiency from the Singleton bound is only o(n).)

5.5 Bibliographic Notes

Reed-Solomon codes were invented by Irving Reed and Gus Solomon [60]. Even though Reed-
Solomon codes need q ≥ n, they are used widely in practice. For example, Reed-Solomon codes
are used in storage of information in CDs and DVDs. This is because they are robust against
burst-errors that come in contiguous manner. In this scenario, a large alphabet is then a good
thing since bursty errors will tend to corrupt the entire symbol in Fq unlike partial errors, e.g.
errors over bits. (See Exercise 5.8.)

It is a big open question to present a deterministic algorithm to compute an irreducible
polynomial of a given degree with the same time complexity as in Corollary 5.1.3. Such results
are known in general if one is happy with polynomial dependence on q instead of log q . See the
book by Shoup [64] for more details.

108

