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Chapter 7

Bridging the Gap Between Shannon and

Hamming: List Decoding

In Section 6.4, we made a qualitative comparison between Hamming and Shannon’s world. We
start this chapter by doing a more quantitative comparison between the two threads of coding
theory. In Section 7.2 we introduce the notion of list decoding, which potentially allows us to
go beyond the (quantitative) results of Hamming and approach those of Shannon’s. Then in
Section 7.3, we show how list decoding allows us to go beyond half the distance bound for any
code. Section 7.4 proves the optimal trade-off between rate and fraction of correctable errors via
list decoding. Finally, in Section 7.5, we formalize why list decoding could be a useful primitive
in practical communication setups.

7.1 Hamming versus Shannon: part II

Let us compare Hamming and Shannon theories in terms of the asymptotic bounds we have
seen so far (recall rate R = k

n and relative distance δ= d
n ).

• Hamming theory: Can correct ≤ δ
2 fraction of worse case errors for codes of relative dis-

tance δ. By the Singleton bound (Theorem 4.3.1),

δ≤ 1−R,

which by Proposition 1.4.1 implies that p fraction of errors can be corrected has to satisfy

p ≤
1−R

2
.

The above can be achieved via efficient decoding algorithms for example for Reed-Solomon
codes (we’ll see this later in the book).

• Shannon theory: In qSCp , for 0 ≤ p < 1−1/q , we can have reliable communication with
R < 1−Hq (p). It can be shown that
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Figure 7.1: In this example vectors are embedded into Euclidean space such that the Euclidean
distance between two mapped points is the same as the Hamming distance between vectors.
c1,c2,c3,c4 are codewords. The dotted lines contain the “bad examples," that is, the received
words for which unique decoding is not possible.

1. 1−Hq (p) ≤ 1−p (this is left as an exercise); and

2. 1−Hq (p) ≥ 1−p−ε, for large enough q– in particular, q = 2Ω(1/ε) (Proposition 3.3.2).

Thus, we can have reliable communication with p ∼ 1−R on qSCp for large enough q .

There is a gap between Shannon and Hamming world: one can correct twice as many errors
in Shannon’s world. One natural question to ask is whether we can somehow “bridge" this gap.
Towards this end, we will now re-visit the the bad example for unique decoding (Figure 1.3) and
consider an extension of the bad example as shown in Figure 7.1.

Recall that y and the codewords c1 and c2 form the bad example for unique decoding that
we have already seen before. Recall that for this particular received word we can not do error
recovery by unique decoding since there are two codewords c1 and c2 having the same distance
δ
2 from vector y. On the other hand, the received word z has an unique codeword c1 with dis-
tance p > δ

2 . However, unique decoding does not allow for error recovery from z. This is because
by definition of unique decoding, the decoder must be able to recover from every error pattern
(with a given Hamming weight bound). Thus, by Proposition 1.4.1, the decoded codeword can-
not have relative Hamming distance larger than δ/2 from the received word. In this example,
because of the received word y, unique decoding gives up on the opportunity to decode z.

Let us consider the example in Figure 7.1 for the binary case. It can be shown that the
number of vectors in dotted lines is insignificant compared to volume of shaded area (for large
enough block length of the code). The volume of all Hamming balls of radius δ

2 around all the
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2k codewords is roughly equal to:

2k 2nH( δ2 ),

which implies that the volume of the shaded area (without the dotted lines) is approximately
equal to:

2n −2k 2nH( δ2 ).

In other words, the volume when expressed as a fraction of the volume of the ambient space is
roughly:

1−2−n(1−H( δ2 )−R), (7.1)

where k = Rn and by the Hamming bound (Theorem 1.3) R ≤ 1− H(δ2 ). If R < 1− H(δ2 ) then
second term of (7.1) is very small. Therefore the number of vectors in shaded area (without
the bad examples) is almost all of the ambient space. Note that by the stringent condition on
unique decoding none of these received words can be decoded (even though for such received
words there is a unique closest codeword). Thus, in order to be able to decode such received
vectors, we need to relax the notion of unique decoding. We will consider such a relaxation
called list decoding next.

7.2 List Decoding

The new notion of decoding that we will discuss is called list decoding as the decoder is allowed
to output a list of answers. We now formally define (the combinatorial version of) list decoding:

Definition 7.2.1. Given 0 ≤ ρ ≤ 1,L ≥ 1, a code C ⊆Σ
n is (ρ,L)-list decodable if for every received

word y ∈Σ
n ,

∣
∣
{

c ∈C |∆(y,c) ≤ ρn
}∣
∣≤ L

Given an error parameter ρ, a code C and a received word y, a list-decoding algorithm
should output all codewords in C that are within (relative) Hamming distance ρ from y. Note
that if the fraction of errors that occurred during transmission is at most ρ then the transmitted
codeword is guaranteed to be in the output list. Further, note that if C is (ρ,L)-list decodable
then the algorithm will always output at most L codewords for any received word. In other
words, for efficient list-decoding algorithm, L should be a polynomial in the block length n

(as otherwise the algorithm will have to output a super-polynomial number of codewords and
hence, cannot have a polynomial running time). Thus, the restriction of L being at most some
polynomial in n is an a priori requirement enforced by the fact that we are interested in effi-
cient polynomial time decoding algorithms. Another reason for insisting on a bound on L is
that otherwise the decoding problem can become trivial: for example, one can output all the
codewords in the code. Finally, it is worthwhile to note that one can always have an exponential
time list-decoding algorithm: go through all the codewords in the code and pick the ones that
are within ρ (relative) Hamming distance of the received word.

Note that in the communication setup, we need to recover the transmitted message. In
such a scenario, outputting a list might not be useful. There are two ways to get around this
“problem":
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1. Declare a decoding error if list size > 1. Note that this generalizes unique decoding (as
when the number of errors is at most half the distance of the code then there is a unique
codeword and hence, the list size will be at most one). However, the gain over unique
decoding would be substantial only if for most error patterns (of weight significantly more
than half the distance of the code) the output list size is at most one. Fortunately, it can
be show that:

• For random codes, with high probability, for most error patterns, the list size is at
most one. In other words, for most codes, we can hope to see a gain over unique
decoding. The proof of this fact follows from Shannon’s proof for the capacity for
qSC: the details are left as an exercise.

• In Section 7.5, we show that the above behavior is in fact general: i.e. for any code
(over a large enough alphabet) it is true that with high probability, for most error
patterns, the list size is at most one.

Thus, using this option to deal with multiple answers, we still deal with worse case errors
but can correct more error patterns than unique decoding.

2. If the decoder has access to some side information, then it can use that to prune the list.
Informally, if the worst-case list size is L, then the amount of extra information one needs
is O(logL). This will effectively decrease1 the dimension of the code by O(logL), so if L

is small enough, this will have negligible effect on the rate of the code. There are also
application (especially in complexity theory) where one does not really care about the
rate being the best possible.

Recall that Proposition 1.4.1 implies that δ/2 is the maximum fraction of errors correctable
with unique decoding. Since list decoding is a relaxation of unique decoding, it is natural to
wonder

Question 7.2.1. Can we correct more than δ/2 fraction of errors using list decoding?

and if so

Question 7.2.2. What is the maximum fraction of errors correctable using list decoding?

In particular, note that the intuition from Figure 7.1 states that the answer to Question 7.2.1
should be yes.

1Note that side information effectively means that not all possible vectors are valid messages.
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7.3 Johnson Bound

In this section, we will indeed answer Question 7.2.1 in the affirmative by stating a bound due
to Johnson. To setup the context again, recall that Proposition 1.4.1 implies that any code with
relative distance δ is (δ/2,1)-list decodable.

Notice that if we can show a code for some e >
⌊

d−1
2

⌋

is (e/n,nO(1))-list decodable, then
(combinatorially) it is possible to list decode that code up to e errors. We’ll show by proving the
Johnson bound that this is indeed the case for any code.

Theorem 7.3.1 (Johnson Bound). Let C ⊆ [q]n be a code of distance d. If ρ < Jq

(
d
n

)

, then C is a

(ρ, qdn)-list decodable code, where the function Jq (δ) is defined as

Jq (δ) =
(

1−
1
q

)
(

1−

√

1−
qδ

q −1

)

.

Proof (for q = 2). The proof technique that we will use has a name: double counting. The main
idea is to count the same quantity in two different ways to get both an upper and lower bound
on the same quantity. These bounds then imply an inequality and we will derive our desired
bound from this inequality.

We have to show that for every binary code C ⊆ {0,1}n with distance d (i.e. for every c1 '= c2 ∈
C , ∆(c1,c2) ≥ d) and every y ∈ {0,1}n , |B(y,e)

⋂
C |≤ 2dn.

Fix arbitrary C and y. Let c1, . . . ,cM ∈ B(y,e). We need to show that M ≤ 2dn. Define c′i =
ci −y for 1 ≤ i ≤ M . Then we have the following:

(i) w t (c′i ) ≤ e for 1 ≤ i ≤ M because ci ∈ B(y,e).

(ii) ∆(c′i ,c′j ) ≥ d for every i '= j because ∆(ci ,c j ) ≥ d .

Define
S =

∑

i< j

∆(c′i ,c′j ).

We will prove both an upper and a lower bound on S from which we will extract the required
upper bound on M . Then from (ii) we have

S ≥

(

M

2

)

d (7.2)

Consider the n × M matrix (c′T1 , · · · ,c′TM ). Define mi as the number of 1’s in the i -th row for
1 ≤ i ≤ n. Then the i -th row of the matrix contributes the value mi (M −mi ) to S because this
is the number of 0-1 pairs in that row. (Note that each such pair contributes one to S.) This
implies that

S =
n∑

i=1
mi (M −mi ). (7.3)
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Define
ē =

∑

i

mi

M
.

Note that
n∑

i=1
mi =

M∑

j=1
w t (ci ) ≤ eM ,

where the inequality follows From (i) above. Thus, we have

ē ≤ e.

Using the Cauchy-Schwartz inequality (i.e., 〈x,y〉 ≤ ||x|| · ||y|| for x,y ∈ R
n) by taking x =

(m1, · · · ,mn), y = (1/n, · · · ,1/n), we have

(∑n
i=1 mi

n

)2

≤

(
n∑

i=1
m2

i

)

1
n

. (7.4)

Thus, from (7.3)

S =
n∑

i=1
mi (M −mi ) = M 2ē −

n∑

i=1
m2

i ≤ M 2ē −
(Mē)2

n
= M 2(ē −

ē2

n
), (7.5)

where the inequality follows from (7.4). By (7.2) and (7.5),

M 2
(

ē −
ē2

n

)

≥
M(M −1)

2
d ,

which implies that

M ≤
dn

dn −2nē +2ē2 =
2dn

2dn −n2 +n2 −4nē +4ē2 =
2dn

(n −2ē)2 −n(n −2d)

≤
2dn

(n −2e)2 −n(n −2d)
, (7.6)

where the last inequality follows from the fact that ē ≤ e. Then from

e

n
<

1
2



1−

√

1−
2d

n



 ,

we get
n −2e >

√

n(n −2d).

In other words
(n −2e)2 > n(n −2d).

Thus, (n−2e)2−n(n−2d) ≥ 1 because n,e are all integers and therefore, from (7.6), we have
M ≤ 2dn as desired.
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Next, we prove the following property of the function Jq (·), which along with the Johnson
bound answers Question 7.2.1 in the affirmative.

Lemma 7.3.2. Let q ≥ 2 be an integer and let 0 ≤ x ≤ 1− 1
q . Then the following inequalities hold:

Jq (x) ≥ 1−
,

1−x ≥
x

2
,

where the second inequality is tight for x > 0.

Proof. We start with by proving the inequality

(

1−
1
q

)
(

1−

√

1−
xq

q −1

)

≥ 1−
,

1−x.

Indeed, both the LHS and RHS of the inequality are zero at x = 0. Further, it is easy to check
that the derivatives of the LHS and RHS are 1

√

1− xq
q−1

and 1,
1−x

respectively. The former is always

larger than the latter quantity. This implies that the LHS increases more rapidly than the RHS,
which in turn proves the required inequality.

The second inequality follows from the subsequent relations. As x ≥ 0,

1−x +
x2

4
≥ 1−x,

which implies that
(

1−
x

2

)2
≥ 1−x,

which in turn implies the required inequality. (Note that the two inequalities above are strict
for x > 0, which implies that 1−

,
1−x > x/2 for every x > 0, as desired.)

Theorem 7.3.1 and Lemma 7.3.2 imply that for any code, list decoding can potentially cor-
rect strictly more errors than unique decoding in polynomial time, as long as q is at most some
polynomial in n (which will be true of all the codes that we discuss in this book). This answers
Question 7.2.1 in the affirmative. See Figure 7.2 for an illustration of the gap between the John-
son bound and the unique decoding bound.

Theorem 7.3.1 and Lemma 7.3.2 also implies the following “alphabet-free" version of the
Johnson bound.

Theorem 7.3.3 (Alphabet-Free Johnson Bound). If e ≤ n −
,

n(n −d), then any code with dis-

tance d is (e/n, qnd)-list decodable for all the q.

A natural question to ask is the following:
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Figure 7.2: The trade-off between rate R and the fraction of errors that can be corrected. 1−
,

R

is the trade-off implied by the Johnson bound. The bound for unique decoding is (1−R)/2 while
1−R is the Singleton bound (and the list decoding capacity for codes over large alphabets).

Question 7.3.1. Is the Johnson bound tight?

The answer is yes in the sense that there exist linear codes with relative distance δ such
that we can find Hamming ball of radius larger than Jq (δ) with super-polynomially many code-
words. On the other hand, in the next section, we will show that, in some sense, it is not tight.

7.4 List-Decoding Capacity

In the previous section, we saw what can one achieve with list decoding in terms of distance of
a code. In this section, let us come back to Question 7.2.2. In particular, we will consider the
trade-off between rate and the fraction of errors correctable by list decoding. Unlike the case of
unique decoding and like the case of BSCp , we will be able to prove an optimal trade-off.

Next, we will prove the following result regarding the optimal trade-off between rate of a
code and the fraction of errors that can be corrected via list decoding.

Theorem 7.4.1. Let q ≥ 2, 0 ≤ p < 1− 1
q , and ε > 0. Then the following holds for codes of large

enough block length n:

(i) If R ≤ 1−Hq (p)−ε, then there exists a
(

p,O
(1
ε

))

-list decodable code.

(ii) If R > 1−Hq (p)+ε, every
(

ρ,L
)

-list decodable code has L ≥ qΩ(n).
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Thus, the List-decoding capacity2 is 1− Hq (p) (where p is the fraction of errors). Further,
this fully answers Question 7.2.2. Finally, note that this exactly matches capacity for qSCp and
hence, list decoding can be seen as a bridge between Shannon’s world and Hamming’s world.
The remarkable aspect of this result is that we bridge the gap between these worlds by allowing
the decoder to output at most O(1/ε) many codewords.

7.4.1 Proof of Theorem 7.4.1

We begin with the basic idea behind the proof of part (i) of the theorem.
As in Shannon’s proof for capacity of BSCp , we will use the probabilistic method (Section 3.2).

In particular, we will pick a random code and show that it satisfies the required property with
non-zero probability. In fact, we will show that a random code is (ρ,L)-list decodable with high
probability as long as:

R ≤ 1−Hq (p)−
1
L

The analysis will proceed by proving that probability of a “bad event" is small. “Bad event"
means there exist messages m0,m1, · · · ,mL ∈ [q]Rn and a received code y ∈ [q]n such that:

∆
(

C (mi ),y)
)

≤ ρn, for every 0 ≤ i ≤ L.

Note that if a bad event occurs, then the code is not a (ρ,L)-list decodable code. The probability
of the occurrence of any bad event will then be calculated by an application of the union bound.

Next, we restate Theorem 7.4.1 and prove a stronger version of part (i). (Note that L =
⌈1
ε

⌉

in
Theorem 7.4.2 implies Theorem 7.4.1.)

Theorem 7.4.2 (List-Decoding Capacity). Let q ≥ 2 be an integer, and 0 < ρ < 1− 1
q be a real

number.

(i) Let L ≥ 1 be an integer, then there exists an
(

ρ,L
)

-list decodable code with rate

R ≤ 1−Hq (ρ)−
1
L

(ii) For every
(

ρ,L
)

code of rate 1−Hq (ρ)+ε, it is necessary that L ≥ 2Ω(εn).

Proof. We start with the proof of (i). Pick a code C at random where

|C | = qk , where k ≤
(

1−Hq (ρ)−
1
L

)

n.

That is, as in Shannon’s proof, for every message m, pick C (m) uniformly and independently at
random from [q]n .

2Actually the phrase should be something like “capacity of worst case noise model under list decoding" as the
capacity is a property of the channel. However, in the interest of brevity we will only use the term list-decoding
capacity.
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Given y ∈ [q]n , and m0, · · · ,mL ∈ [q]k , the tuple (y,m0, · · · ,mL) defines a bad event if

C (mi ) ∈ B(y,ρn),0 ≤ i ≤ L.

Note that a code is (ρ,L)-list decodable if and only if there does not exist any bad event.
Fix y ∈ [q]n and m0, · · · ,mL ∈ [q]k .

Note that for fixed i , by the choice of C , we have:

Pr[C (mi ) ∈ B(y,ρn)] =
V olq (ρn,n)

qn
≤ q−n(1−Hq (ρ)), (7.7)

where the inequality follows from the upper bound on the volume of a Hamming ball (Proposi-
tion 3.3.1). Now the probability of a bad event given (y,m0, · · · ,mL) is

Pr

[
L∧

i=0
C (mi ) ∈ B(y,ρn)

]

=
L∏

0
Pr[C (mi ) ∈ B(y,ρn)] ≤ q−n(L+1)(1−Hq (ρ)), (7.8)

where the equality follows from the fact that the random choices of codewords for distinct mes-
sages are independent and the inequality follows from (7.7). Then,

Pr[ There is a bad event] ≤ qn

(

qk

L+1

)

q−n(L+1)(1−Hq (ρ)) (7.9)

≤ qn qRn(L+1)q−n(L+1)(1−Hq (ρ)) (7.10)

= q−n(L+1)[1−Hq (ρ)− 1
L+1−R]

≤ q−n(L+1)[1−Hq (ρ)− 1
L+1−1+Hq (ρ)+ 1

L ] (7.11)

= q− n
L

< 1

In the above, (7.9) follows by the union bound (Lemma 3.1.3) with (7.8) and by counting the

number of y’s (which is qn), and the number of L+1 tuples (which is
( qk

L+1

)

). (7.10) follows from
the fact that

(a
b

)

≤ ab and k = Rn. (7.11) follows by assumption R ≤ 1−Hq (ρ)− 1
L . The rest of the

steps follow from rearranging and canceling the terms. Therefore, by the probabilistic method,
there exists C such that it is (ρ,L)-list decodable.

Now we turn to the proof of part (ii). For this part, we need to show the existence of a y ∈ [q]n

such that |C ∩B(y,ρn)| is exponentially large for every C of rate R ≥ 1−Hq (ρ)+ε. We will again
use the probabilistic method to prove this result.

Pick y ∈ [q]n uniformly at random. Fix c ∈C . Then

Pr[c ∈ B(y,ρn)] = Pr[y ∈ B(c,ρn)]

=
V olq (ρn,n)

qn
(7.12)

≥ q−n(1−Hq (ρ))−o(n), (7.13)
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where (7.12) follows from the fact that y is chosen uniformly at random from [q]n and (7.13)
follows by the lower bound on the volume of the Hamming ball (Proposition 3.3.1).

We have

E [|C ∩B(y,ρn)|] =
∑

c∈C

E [1c∈B(y,ρn)] (7.14)

=
∑

c∈C

Pr[c ∈ B(y,ρn)]

≥
∑

c∈C

q−n(1−Hq (ρ)+o(n)) (7.15)

= qn[R−1+Hq (ρ)−o(1)]

≥ qΩ(εn)

(7.16)

In the above, (7.14) follows by the linearity of expectation (Proposition 3.1.2), (7.15) follows
from (7.13), and (7.16) follows by choice of R. Hence, by the probabilistic method, there exists y

such that |B(y,ρn)∩C | is qΩ(n), as desired.

The above proof can be modified to work for random linear codes. In particular, one can
show that with high probability, a random linear code is (ρ,L)-list decodable code as long as

R ≤ 1−Hq (ρ)−
1

.logq (L+1)/
. (7.17)

The details are left as an exercise.
We now return to Question 7.3.1. Note that by the Singleton bound, the Johnson bound im-

plies that for any code one can hope to list decode from about p ≤ 1−
,

R fraction of errors.
However, this trade-off between p and R is not tight. Note that Lemma 3.3.2 along with Theo-
rem 7.4.1 implies that for large q , the list decoding capacity is 1−R > 1−

,
R. Figure 7.2 plots

and compares the relevant trade-offs.
Finally, we have shown that the list decoding capacity is 1−Hq (p). However, we showed the

existence of a code that achieves the capacity by the probabilistic method. This then raises the
following question:

Question 7.4.1. Do there exist explicit codes that achieve list decoding capacity?

Also the only list decoding algorithm that we have seen so far is the brute force algorithm that
checks every codeword to see if they need to be output. This also leads to the follow-up question
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Question 7.4.2. Can we achieve list decoding capacity with efficient list decoding algorithms?

A more modest goal related to the above would be the following:

Question 7.4.3. Can we design an efficient list decoding algorithm that can achieve the John-

son bound? In particular, can we efficiently list decode a code of rate R from 1−
,

R fraction

of errors?

7.5 List Decoding from Random Errors

In this section, we formalize the intuition we developed from Figure 7.1. In particular, recall
that we had informally argued that for most error patterns we can correct beyond the δ/2 bound
for unique decoding (Proposition 1.4.1). Johnson bound (Theorem 7.3.1) tells us that one can
indeed correct beyond δ/2 fraction of errors. However, there are two shortcomings. The first is
that the Johnson bounds tells us that the output list size is qdn but it does not necessarily imply
that for most error patterns, there is unique by closest codewords (i.e. one can uniquely recover
the transmitted codeword). In other words, Johnson bound is a “true" list decoding result and
tells us nothing about the behavior of codes on the “average." The second aspect is that the
Johnson bound holds for up to 1−

,
1−δ fraction of errors. Even though it is more than δ/2 for

every δ> 0, the bound e.g. is not say twice the unique decoding bound for every δ> 0.
Next we show that for any code with relative distance δ (over a large enough alphabet size)

for most error patterns, the output of a list decoder for any fraction of errors arbitrarily close to
δ will have size one. In fact, the result is somewhat stronger: it show that even if one fixes the
error locations arbitrarily, for most error patterns the output list size is one.

Theorem 7.5.1. Let ε> 0 be a real and q ≥ 2Ω(1/ε) be an integer. Then the following is true for any

0 < δ< 1−1/q and large enough n. Let C ⊆ {0,1, ...q −1}n be a code with relative distance δ and

let S⊆ [n] such that |S| = (1−ρ)n, where (0 < ρ ≤ δ−ε).

Then, for all c ∈C and all but a q−Ω(εn) fraction of error patterns, e ∈ {0,1...q −1}n such that

eS = 0 and w t (e) = ρn (7.18)

the only codeword within Hamming distance ρn of c+e is c itself.

For illustration of the kinds of error pattern we will deal with, see Figure 7.3.
Before we present the proof, we present certain corollaries (the proofs of which we leave as

exercises). First the result above implies a similar result of the output list size being one for the
following two random noise models: (i) uniform distribution over all error patterns of weight
ρn and (ii) qSCp . In fact, we claim that the result also implies that any code with distance at
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Figure 7.3: Illustration of the kind of error patterns we are trying to count.

least p +ε allows for reliable communication over qSCp . (Contrast the 2p +ε distance that was
needed for a similar result that was implied by Proposition 6.4.1.)

Finally, we present a lemma (the proof is left as an exercise) that will be crucial to the proof
of Theorem 7.5.1.

Lemma 7.5.2. Let be C be an (n,k,d)q code. If we fix the values in n−d +1 out of the n positions

in a possible codeword, then at most one codeword in C can agree with the fixed values.

Proof of Theorem 7.5.1. For the rest of the proof, fix a c ∈C . For notational convenience define
ES to be the set of all error patterns e such that eS = 0 and w t (e) = ρn. Note that as every error
position has (q −1) non-zero choices and there are ρn such positions in [n] \ S, we have

|Es | = (q −1)ρn . (7.19)

Call an error pattern e ∈ Es as bad if there exists another codeword c′ '= c such that

0(c′,c+e) ≤ ρn.

Now, we need to show that the number of bad error patterns is at most

q−Ω(εn)|Es |.

We will prove this by a somewhat careful counting argument.
We begin with a definition.

Definition 7.5.1. Every error pattern e is associated with a codeword c(e), which is the closest
codeword which lies within Hamming distance ρn from it.

For a bad error pattern we insist on having c(e) '= c– note that for a bad error pattern such a
codeword always exists. Let A be the set of positions where c(e) agrees with c+e.

The rest of the argument will proceed as follows. For each possible A, we count how many
bad patterns e are associated with it (i.e. c+e and c(e) agree exactly in the positions in A). To
bound this count non-trivially, we will use Lemma 7.5.2.

Define a real number α such that |A| = αn. Note that since c(e) and c+ e agree in at least
1−ρ positions,

α≥ 1−ρ ≥ 1−δ+ε. (7.20)
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For now let us fix A with |A| = αn and to expedite the counting of the number of bad error
patterns, let us define two more sets:

A1 = A∩S,

and
A2 = A \ A1.

See Figure 7.4 for an illustration of the notation that we have fixed so far.

A

S

A1

A2

e

c+e

c(e)

Figure 7.4: Illustration of notation used in the proof of Theorem 7.5.1. Positions in two different
vectors that agree have the same color.
.

Define β such that
|A1| =βn. (7.21)

Note that this implies that
|A2| = (α−β)n. (7.22)

Further, since A1 ⊆ A, we have
β≤α.

To recap, we have argued that every bad error pattern e corresponds to a codeword c(e) '= c

and is associated with a pair of subsets (A1, A2). So, we fix (A1, A2) and then count the number
of bad e ’s that map to (A1, A2). (Later on we will aggregate this count over all possible choices
of (A1, A2).)

Towards this end, first we overestimate the number of error patterns e that map to (A1, A2)
by allowing such e to have arbitrary values in [n] \ (S ∪ A2). Note that all such values have to be
non-zero (because of (7.18). This implies that the number of possible distinct e[n]\(S∪A2) is at
most

(q −1)n−|S|−|A2| = qn−(1−ρ)n−(α−β)n , (7.23)
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where the equality follows from the given size of S and (7.22). Next fix a non-zero x and let us
only consider error patterns e such that

e[n]\(S∪A2) = x.

Note that at this stage we have an error pattern e as depicted in Figure 7.5.

??e

S

A1 A2

0 x

Figure 7.5: Illustration of the kind of error patterns we are trying to count now. The ? denote
values that have not been fixed yet.

Now note that if we fix c(e)A2 , then we would also fix eA2 (as (c+e)A2 = (c(e))A2 ). Recall that
c is already fixed and hence, this would fix e as well. Further, note that

c(e)A1 = (c+e)A1 = cA1 .

This implies that c(e)A1 is already fixed and hence, by Lemma 7.5.2 we would fix c(e) if we fix (say
the first) (1−δ)n+1−|A1|positions in c(e)A2 . Or in other words, by fixing the first (1−δ)n+1−|A1|
positions in eA2 , e would be completely determined. Thus, the number of choices for e that have
the pattern in Figure 7.5 is upper bounded by

q (1−δ)n+1−|A1| = (q −1)(1−δ)n+1−βn , (7.24)

where the equality follows from (7.21).
Thus, by (7.23) and (7.24) the number of possible bad error patterns e that map to (A1, A2)

is upper bounded by

(q −1)n−(1−ρ)n−αn+βn+(1−δ)n+1−βn ≤ (q −1)ρn−εn+1 = (q −1)−εn+1|Es |,

where the inequality follows from (7.20) and the equality follows from (7.19).
Finally, summing up over all choices of A = (A1, A2) (of which there are at most 2n), we get

that the total number of bad patterns is upper bounded by

2n · (q −1)−εn+1 · |ES |≤ q
n

log2 q −
εn
2 +1

2 · |EA|≤ q−εn/4 · |ES |,

where the first inequality follows from q − 1 ≥
,

q (which in turn is true for q ≥ 3) while the
last inequality follows from the fact that for q ≥ Ω(1/ε) and large enough n, n+1/2

log2 q < εn
4 . This

completes the proof. !

It can be shown that Theorem 7.5.1 is not true for q = 2o(1/ε). The proof is left as an exercise.
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7.6 Bibliographic Notes

List decoding was defined by Elias [11] and Wozencraft [59].
The result showing that for random error patterns, the list size with high probability is one

for the special case of Reed-Solomon codes was shown by McEliece [41]. The result for all codes
was proved by Rudra and Uurtamo [47]

In applications of list decoding in complexity theory (see for example [54],[18, Chap. 12]),
side information is used crucially to prune the output of a list decoding algorithm to compute
a unique answer.

Guruswami [17] showed that the answer to Question 7.3.1 is yes in the sense that there ex-
ist linear codes with relative distance δ such that we can find Hamming ball of radius larger
than Jq (δ) with super-polynomially many codewords. This result was proven under a number-
theoretic assumption, which was later removed by [27].

(7.17) implies that there exist linear codes with rate 1 − Hq (ρ) − ε that are
(

ρ, qO(1/ε))-list
decodable. (This is also true for most linear codes with the appropriate parameters.) However,
for a while just for q = 2, we knew the existence of

(

ρ,O(1/ε)
)

-list decodable codes [21] (though
it was not a high probability result). Guruswami, Håstad and Kopparty resolved this “gap" by
showing that random linear codes of rate 1−Hq (ρ)−ε are (ρ,O(1/ε))-list decodable (with high
probability) [20].
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