
Foreword

This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu-

ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY

and by Madhu Sudan at MIT.

This version is dated April 28, 2013. For the latest version, please go to

http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/

The material in this chapter is supported in part by the National Science Foundation under

CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex-

pressed in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2013.

This work is licensed under the Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444

Castro Street, Suite 900, Mountain View, California, 94041, USA.

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 9

From Large to Small Alphabets: Code

Concatenation

Recall Question 8.3.2 that we had asked before: Is there an explicit asymptotically good binary
code (that is, rate R > 0 and relative distance δ> 0)? In this chapter, we will consider this ques-
tion when we think of explicit code in the sense of Definition 6.3.1 as well as the stronger notion
of a strongly explicit code (Definition 6.3.2).

Let us recall all the (strongly) explicit codes that we have seen so far. (See Table 9.1 for an
overview.)

Code R δ

Hamming 1−O
(

logn
n

)

O
(1

n

)

Hadamard O
(

logn
n

)
1
2

Reed-Solomon 1
2 O

(
1

logn

)

Table 9.1: Strongly explicit binary codes that we have seen so far.

Hamming code (Section 2.4), which has rate R = 1−O(logn/n) and relative distance δ =
O(1/n) and the Hadamard code (Section 2.7), which has rate R = O(logn/n) and relative dis-
tance 1/2. Both of these codes have extremely good R or δ at the expense of the other param-
eter. Next, we consider the Reed-Solomon code (of say R = 1/2) as a binary code, which does
much better– δ= 1

logn , as we discuss next.

Consider the Reed-Solomon over F2s for some large enough s. It is possible to get an
[

n, n
2 , n

2 +1
]

2s

Reed-Solomon code (i.e. R = 1/2). We now consider a Reed-Solomon codeword, where every
symbol in F2s is represented by an s-bit vector. Now, the “obvious” binary code created by view-
ing symbols from F2s as bit vectors as above is an

[

ns, ns
2 , n

2 +1
]

2 code1. Note that the distance

of this code is only Θ

(
N

log N

)

, where N = ns is the block length of the final binary code. (Recall
that n = 2s and so N = n logn.)

1The proof is left as an exercise.

123

The reason for the (relatively) poor distance is that the bit vectors corresponding to two
different symbols in F2s may only differ by one bit. Thus, d positions which have different F2s

symbols might result in a distance of only d as bit vectors.
To fix this problem, we can consider applying a function to the bit-vectors to increase the

distance between those bit-vectors that differ in smaller numbers of bits. Note that such a func-
tion is simply a code! We define this recursive construction more formally next. This recursive
construction is called concatenated codes and will help us construct (strongly) explicit asymp-
totically good codes.

9.1 Code Concatenation

For q ≥ 2, k ≥ 1 and Q = qk , consider two codes which we call outer code and inner code:

Cout : [Q]K → [Q]N ,

Cin : [q]k → [q]n .

Note that the alphabet size of Cout exactly matches the number of messages for Cin. Then given
m = (m1, . . . ,mK) ∈ [Q]K , we have the code Cout ◦Cin : [q]kK → [q]nN defined as

Cout ◦Cin(m) = (Cin(Cout(m)1), . . . ,Cin(Cout(m)N)) ,

where
Cout(m) = (Cout(m)1, . . . ,Cout(m)N) .

This construction is also illustrated in Figure 9.1.

Cin

m1 m2 mK

Cout(m)1 Cout(m)2 Cout(m)N

Cin (Cout(m)1) Cin (Cout(m)2) Cin (Cout(m)N)

Cout

Cin Cin

Figure 9.1: Concatenated code Cout ◦Cin.

We now look at some properties of a concatenated code.

Theorem 9.1.1. If Cout is an (N ,K ,D)qk code and Cin is an (n,k,d)q code, then Cout ◦Cin is an

(nN ,kK ,dD)q code. In particular, if Cout (Cin resp.) has rate R (r resp.) and relative distance δout

(δin resp.) then Cout ◦Cin has rate Rr and relative distance δout ·δin.

124

Proof. The first claim immediately implies the second claim on the rate and relative distance of
Cout ◦Cin. The claims on the block length, dimension and alphabet of Cout ◦Cin follow from the
definition.2 Next we show that the distance is at least dD . Consider arbitrary m1 &= m2 ∈ [Q]K .
Then by the fact that Cout has distance D , we have

∆ (Cout (m1) ,Cout (m2)) ≥ D. (9.1)

Thus for each position 1 ≤ i ≤ N that contributes to the distance above, we have

∆
(

Cin
(

Cout (m1)i

)

,Cin
(

Cout (m2)i

))

≥ d , (9.2)

as Cin has distance d . Since there are at least D such positions (from (9.1)), (9.2) implies

∆ (Cout ◦Cin (m1) ,Cout ◦Cin (m2)) ≥ dD.

The proof is complete as the choices of m1 and m2 were arbitrary.

If Cin and Cout are linear codes, then so is Cout ◦Cin, which can be proved for example, by
defining a generator matrix for Cout ◦Cin in terms of the generator matrices of Cin and Cout. The
proof is left as an exercise.

9.2 Zyablov Bound

We now instantiate an outer and inner codes in Theorem 9.1.1 to obtain a new lower bound on
the rate given a relative distance. We’ll initially just state the lower bound (which is called the
Zyablov bound) and then we will consider the explicitness of such codes.

We begin with the instantiation of Cout. Note that this is a code over a large alphabet and
we have seen an optimal code over large enough alphabet: Reed-Solomon codes (Chapter 5).
Recall that the Reed-Solomon codes are optimal because they meet the Singleton bound 4.3.1.
Hence, let us assume that Cout meets the Singleton bound with rate of R, i.e. Cout has relative
distance δout > 1−R. Note that now we have a chicken and egg problem here. In order for
Cout ◦Cin to be an asymptotically good code, Cin needs to have rate r > 0 and relative distance
δin > 0 (i.e. Cin also needs to be an asymptotically good code). This is precisely the kind of code
we are looking for to answer Question 8.3.2! However the saving grace will be that k can be
much smaller than the block length of the concatenated code and hence, we can spend “more"
time searching for such an inner code.

Suppose Cin meets the GV bound (Theorem 4.2.1) with rate of r and thus with relative dis-
tance δin ≥ H−1

q (1− r)−ε, for some ε> 0. Then by Theorem 9.1.1, Cout ◦Cin has rate of r R and
δ= (1−R)(H−1

q (1− r)−ε). Expressing R as a function of δ and r , we get the following:

R = 1−
δ

H−1
q (1− r)−ε

.

2Technically, we need to argue that the qkK messages map to distinct codewords to get the dimension of kK .
However, this follows from the fact, which we will prove soon, that Cout ◦Cin has distance dD ≥ 1, where the in-
equality follows for d ,D ≥ 1.

125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R

δ

GV bound
Zyablov bound

Figure 9.2: The Zyablov bound for binary codes. For comparison, the GV bound is also plotted.

Then optimizing over the choice of r , we get that the rate of the concatenated code satisfies

R ≥ max
0<r<1−Hq (δ+ε)

r

(

1−
δ

H−1
q (1− r)−ε

)

,

where the bound of r < 1−Hq (δ+ε) is necessary to ensure that R > 0. This lower bound on the
rate is called the Zyablov bound. See Figure 9.2 for a plot of this bound for binary codes.

To get a feel for how the bound behaves, consider the case when δ = 1
2 − ε. We claim that

the Zybalov bound states that R ≥Ω(ε3). (Recall that the GV bound for the same δ has a rate of
Ω(ε2).) The proof of this claim is left as an exercise.

Note that the Zyablov bound implies that for every δ> 0, there exists a (concatenated) code
with rate R > 0. However, we already knew about the existence of an asymptotically good code
by the GV bound (Theorem 4.2.1). Thus, a natural question to ask is the following:

Question 9.2.1. Can we construct an explicit code on the Zyablov bound?

We will focus on linear codes in seeking an answer to the question above because linear codes
have polynomial size representation. Let Cout be an [N ,K]Q Reed-Solomon code where N =
Q −1 (evaluation points being F

∗
Q with Q = qk). This implies that k =Θ(log N). However we still

need an efficient construction of an inner code that lies on the GV bound. We do not expect
to construct such a Cin in time poly(k) as that would answer Open Question 8.3.2! However,
since k =O(log N), note that an exponential time in k algorithm is still a polynomial (in N) time
algorithm.

There are two options for this exponential (in k) time construction algorithm for Cin:

126

• Perform an exhaustive search among all generator matrices for one satisfying the required
property for Cin. One can do this because the Varshamov bound (Theorem 4.2.1) states
that there exists a linear code which lies on the GV bound. This will take qO(kn) time.
Using k = r n (or n =O(k)), we get qO(kn) = qO(k2) = NO(log N), which is upper bounded by
(nN)O(log(nN)), a quasi-polynomial time bound.

• The second option is to construct Cin in qO(n) time and thus use (nN)O(1) time overall. See
Exercise 9.4.1 for one way to construct codes on the GV bound in time qO(n).

Thus,

Theorem 9.2.1. We can construct a code that achieves the Zyablov bound in polynomial time.

In particular, we can construct explicit asymptotically good code in polynomial time, which
answers Question 9.2.1 in the affirmative.

A somewhat unsatisfactory aspect of this construction (in the proof of Theorem 9.2.1) is that
one needs a brute force search for a suitable inner code (which led to the polynomial construc-
tion time). A natural followup question is

Question 9.2.2. Does there exist a strongly explicit asymptotically good code?

9.3 Strongly Explicit Construction

We will now consider what is known as the Justesen code. The main insight in these codes is that
if we are only interested in asymptotically good codes, then the arguments in the previous sec-
tion would go through even if (i) we pick different inner codes for each of the N outer codeword
positions and (ii) most (but not necessarily all) inner code lie on the GV bound. It turns out that
constructing an “ensemble" of codes such that most of the them lie on the GV bound is much
easier than constructing a single code on the GV bound. For example, the ensemble of all linear
codes have this property– this is exactly what Varshamov proved. However, it turns out that we
need this ensemble of inner codes to be a smaller one than the set of all linear codes.

Justesen code is concatenated code with multiple, different linear inner codes. Specifically,
it is composed of an (N ,K ,D)qk outer code Cout and different inner codes C i

in : 1 ≤ i ≤ N . For-
mally, the concatenation of these codes, denoted by Cout ◦

(

C 1
in, . . . ,C N

in

)

, is defined as follows:

given a message m ∈
[

qk
]K

, let the outer codeword be denoted by (c1, . . . ,cN)
def= Cout(m). Then

Cout ◦
(

C 1
in, . . . ,C N

in

)

(m) =
(

C 1
in(c1),C 2

in(c2), . . . ,C n
in(cN)

)

.
We will need the following result.

Theorem 9.3.1. Let ε> 0. There exists an ensemble of inner codes C 1
in,C 2

in, . . . ,C N
in of rate 1

2 , where

N = qk −1, such that for at least (1−ε)N values of i , C i
in has relative distance ≥ H−1

q

(1
2 −ε

)

.

127

In fact, this ensemble is the following: for α ∈ F
∗
qk , the inner code Cα

in : Fk
q → F

2k
q is defined as

Cα
in(x) = (x,αx). This ensemble is called the Wozencraft ensemble. We claim that Cα

in for every
α ∈ F

∗
qk is linear and is strongly explicit. (The proof if left as an exercise.)

9.3.1 Justesen code

For the Justesen code, the outer code Cout is a Reed-Solomon code evaluated over F
∗
qk of rate

R, 0 < R < 1. The outer code Cout has relative distance δout = 1−R and block length of N =
qk − 1. The set of inner codes is the Wozencraft ensemble {Cα

in}α∈F∗
qk

from Theorem 9.3.1. So

the Justesen code is the concatenated code C∗ def= Cout ◦ (C 1
in,C 2

in, . . . ,C N
in) with the rate R

2 . The
following proposition estimates the distance of C∗.

Proposition 9.3.2. Let ε> 0. C∗ has relative distance at least (1−R −ε) ·H−1
q

(1
2 −ε

)

Proof. Consider m1 &= m2 ∈ (Fqk)K . By the distance of the outer code |S|≥ (1−R)N , where

S =
{

i |Cout(m1)i &=Cout(m2)i

}

.

Call the i th inner code good if C i
in has distance at least d

def= H−1
q

(1
2 −ε

)

·2k. Otherwise, the inner
code is considered bad. Note that by Theorem 9.3.1, there are at most εN bad inner codes. Let
Sg be the set of all good inner codes in S, while Sb is the set of all bad inner codes in S. Since
Sb ≤ εN ,

|Sg | = |S|− |Sb |≥ (1−R −ε)N . (9.3)

For each good i ∈ S, by definition we have

∆

(

C i
in

(

Cout
(

m1)

i

)

,C i
in

(

Cout
(

m2)

i

)
)

≥ d . (9.4)

Finally, from (9.3) and (9.4), we obtain that the distance of C∗ is at least

(1−R −ε) ·N d = (1−R −ε)H−1
q

(
1
2
−ε

)

N ·2k,

as desired.

Since the Reed-Solomon codes as well as the Wozencraft ensemble are strongly explicit, the
above result implies the following:

Corollary 9.3.3. The concatenated code C∗ from Proposition 9.3.2 is an asymptotically good code

and is strongly explicit.

Thus, we have now satisfactorily answered Question 9.2.2 modulo Theorem 9.3.1, which we
prove next.

128

Proof of Theorem 9.3.1. Fix y = (y1,y2) ∈ F
2k
q \ {0}. Note that this implies that y1 = 0 and y2 = 0

are not possible. We claim that y ∈ Cα
in for at most one α ∈ F∗

2k . The proof is by a simple case
analysis. First, note that if y ∈Cα

in, then it has to be the case that y2 =α ·y1.

• Case 1: y1 &= 0 and y2 &= 0, then y ∈Cα
in, where α= y2

y1
.

• Case 2: y1 &= 0 and y2 = 0, then y ∉ Cα
in for every α ∈ F

∗
2k (as αy1 &= 0 since product of two

elements in F
∗
2k also belongs to F

∗
2k).

• Case 3: y1 = 0 and y2 &= 0, then y ∉Cα
in for every α ∈ F

∗
2k (as αy1 = 0).

Now assume that w t (y) < H−1
q (1−ε)n. Note that if y ∈Cα

in, then Cα
in is “bad”(i.e. has relative

distance < H−1
q

(1
2 −ε

)

). Since y ∈Cα
in for at most one value of α, the total number of bad codes

is at most

∣
∣
∣
∣

{

y|w t (y) < H−1
q

(
1
2
−ε

)

·2k

}∣
∣
∣
∣
≤V olq

(

H−1
q

(
1
2
−ε

)

·2k,2k

)

≤ q Hq (H−1
q (1

2−ε))·2k (9.5)

= q (1
2−ε)·2k

=
qk

q2εk

< ε(qk −1) (9.6)

= εN . (9.7)

In the above, (9.5) follows from our good old upper bound on the volume of a Hamming ball
(Proposition 3.3.1) while (9.6) is true for large enough k. Thus for at least (1−ε)N values of α,
Cα

in has relative distance at least H−1
q

(1
2 −ε

)

, as desired. !

By concatenating an outer code of distance D and an inner code of distance d , we can ob-
tain a code of distance at least ≥ Dd (Theorem 9.1.1). Dd is called the concatenated code’s de-

sign distance. For asymptotically good codes, we have obtained polynomial time construction
of such codes (Theorem 9.2.1, as well as strongly explicit construction of such codes (Corol-
lary 9.3.3). Further, since these codes were linear, we also get polynomial time encoding. How-
ever, the following natural question about decoding still remains unanswered.

Question 9.3.1. Can we decode concatenated codes up to half their design distance in poly-

nomial time?

129

9.4 Exercises

Exercise 9.4.1. In Section 4.2.1, we saw that the Gilbert construction can compute an (n,k)q

code in time qO(n). Now the Varshamov construction (Section 4.2.2) is a randomized construc-
tion and it is natural to ask how quickly can we compute an [n,k]q code that meets the GV
bound. In this exercise, we will see that this can also be done in qO(n) deterministic time, though
the deterministic algorithm is not that straight-forward anymore.

1. (A warmup) Argue that Varshamov’s proof gives a qO(kn) time algorithm that constructs
an [n,k]q code on the GV bound. (Thus, the goal of this exercise is to “shave" off a factor
of k from the exponent.)

2. A k×n Toeplitz Matrix A = {Ai , j }k , n
i=1, j=1 satisfies the property that Ai , j = Ai−1, j−1. In other

words, any diagonal has the same value. For example, the following is a 4× 6 Toeplitz
matrix: 






1 2 3 4 5 6
7 1 2 3 4 5
8 7 1 2 3 4
9 8 7 1 2 3








A random k ×n Toeplitz matrix T ∈ F
k×n
q is chosen by picking the entries in the first row

and column uniformly (and independently) at random.

Prove the following claim: For any non-zero m ∈ F
k
q , the vector m ·T is uniformly dis-

tributed over Fn
q , that is for every y ∈ F

n
q , Pr

[

m ·T = y
]

= q−n .

(Hint: Write down the expression for the value at each of the n positions in the vector m·T
in terms of the values in the first row and column of T . Think of the values in the first row
and column as variables. Then divide these variables into two sets (this “division" will
depend on m) say S and S. Then argue the following: for every fixed y ∈ F

n
q and for every

fixed assignment to variables in S, there is a unique assignment to variables in S such that
mT = y.)

3. Briefly argue why the claim in part (b) implies that a random code defined by picking its
generator matrix as a random Toeplitz matrix with high probability lies on the GV bound.

4. Conclude that an [n,k]q code on the GV bound can be constructed in time 2O(k+n).

9.5 Bibliographic Notes

Code concatenation was first proposed by Forney[12].
Justesen codes were constructed by Justesen [34]. In his paper, Justesen attributes the Wozen-

craft ensemble to Wozencraft.

130

