
Error Correcting Codes: Combinatorics, Algorithms and Applications Fall 2007

Homework
Due Wednesday October 31, 2007 in class

You can collaborate in groups of up to 3. However, the write-ups must be done individually, that
is, your group might have arrived at the solution of a problem together but everyone in the group
has to write up the solution in their own words. Further, you must state at the beginning of your
homework solution the names of your collaborators. You are strongly urged to try and solve the
problems without consulting any reference material besides what we cover in class (such as any
textbooks or material on the web where the solution may appear either fully or in part). If for
some reason you feel the need to consult some source, please acknowledge the source and try to
explain what difficulty you couldn’t overcome before consulting the source and how it helped you
overcome that difficulty.
You will also be busy with your project proposals which are due on October 19, so I encourage you
to start thinking on the problems early. I should mention that the problems below are not meant
to directly test what we have covered in the class. Rather, the philosophy behind these problems
is to cover topics that were either covered fleetingly in class or have not been covered at all (but
are closely related to topics that have been covered in some detail).

1. (Systematic Codes) In the class I mentioned that there is a way to easily obtain the parity
check matrix of a linear code from its generator matrix. In this problem, we will look at this
“conversion” procedure.

(a) Prove that any generator matrix G of an [n, k]2 code C (recall that G is a k×n matrix)
can be converted into another equivalent generator matrix of the form G′ = [Ik|A],
where Ik is the k× k identity matrix and A is some k× (n− k) matrix. By equivalent, I
mean that the code generated by G′ is the same as C, except some positions in (all of)
the codewords might be permuted (in some fixed order).
Note that the code generated by G′ has the message bits as its first k bits in the
corresponding codeword. Such codes are called systematic codes. In other words, every
linear code can be converted into a systematic code.

(b) Given an k × n generator matrix of the form [Ik|A], give a corresponding (n − k) × n
parity check matrix. Briefly justify why your construction of the parity check matrix is
correct.
(Hint : Try to think of a parity check matrix that can be decomposed into two subma-
trices: one will be closely related to A and the other will be an identity matrix, though
the latter might not be a k × k matrix).

2. (Operations on Codes) In class we have seen some examples of how one can modify one
code to get another code with interesting properties (for example, the construction of the
Hadamard code from the Simplex code and the construction of codes with smaller block
lengths in the proof of the Singleton bound). In this problem you will need to come up with
various ways of constructing new codes from existing ones.
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Prove the following statements (recall that the notation (n, k, d)q code is used for general
codes with qk codewords where k need not be an integer, whereas the notation [n, k, d]q code
stands for a linear code of dimension k):

(a) If there exists an (n, k, d)q code, then there also exists an (n− 1, k, d′ ≥ d− 1)q code.

(b) If there exists an (n, k, d)2 code with d odd, then there also exists an (n + 1, k, d + 1)2
code.

(c) If there exists an (n, k, d)2m code, then there also exists an (nm, km, d′ ≥ d)2 code.

(d) If there exists an [n, k, d]2m code, then there also exists an [nm, km, d′ ≥ d]2 code.

(e) If there exists an [n, k, d]q code, then there also exists an [n− d, k− 1, d′ ≥ dd/qe]q code.

3. (Alternate Proof of the Singleton Bound) Use 2(a) above to prove the Singleton bound.
(Hint : Apply 2(a) repetitively till you “cannot” apply it anymore. What can you say about
the resulting code at that point?)

4. (Shannon’s Capacity theorem for BSCp) In class, we proved Shannon’s capacity theorem
by choosing general random codes. I mentioned that a similar result can be proved using
random linear codes. Also, we saw that a code with relative distance slightly more than p
can have reliable communication over BSCp. I also mentioned that the converse needs to be
true. We revisit these two issues in this problem.

(a) Briefly argue (full proof not required) why the proof of Shannon’s theorem for the binary
symmetric channel that we did in class holds even if the encoding function E is restricted
to be linear.

(b) Prove that for communication on BSCp, if an encoding function E achieves a maximum
decoding error probability (taken over all messages) that is exponentially small, i.e., at
most 2−γn for some γ > 0, then there exists a δ = δ(γ, p) > 0 such that the code defined
by E has relative distance at least δ. In other words, good distance is necessary for
exponentially small maximum decoding error probability.

5. (Shannon’s Capacity theorem for Erasure Channels) In class I mentioned that the
binary erasure channel with erasure probability α has capacity 1 − α. In this problem, you
will prove this result (and its generalization to larger alphabets) via a sequence of smaller
results.

(a) For positive integers k ≤ n, show that less than a fraction qk−n of the k × n matrices G
over Fq fail to generate a linear code of block length n and dimension k. (Or equivalently,
except with probability less than qk−n, the rank of G is k.)

(b) Consider the q-ary erasure channel with erasure probability α (qECα, for some α, 0 ≤
α ≤ 1): the input to this channel is a field element x ∈ Fq, and the output is x with
probability 1− α, and an erasure ’?’ with probability α. For a linear code C generated
by an k× n matrix G over Fq, let D : (Fq ∪ {?})n → C ∪ {fail} be the following decoder:

D(y) =
{

c if y agrees with exactly one c ∈ C on the unerased entries in Fq

fail otherwise
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For a set J ⊆ {1, 2, . . . , n}, let Perr(G|J) be the probability (over the channel noise
and choice of a random message) that D outputs fail conditioned on the erasures being
indexed by J . Prove that the average value of Perr(G|J) taken over all G ∈ Fk×n

q is less
than qk−n+|J |.

(c) Let Perr(G) be the decoding error probability of the decoder D for communication using
the code generated by G on the qECα. Show that when k = Rn for R < 1 − α, the
average value of Perr(G) over all k × n matrices G over Fq is exponentially small in n.

(d) Conclude that one can reliably communicate on the qECα at any rate less than 1 − α
using a linear code.

6. (Alternate definitions of codes) We have defined Reed-Solomon and Hadamard codes in
class. In this problem you will prove that certain alternate definitions also suffice.

(a) Consider the Reed-Solomon code over a field F of size q and block length n = q − 1
defined as

RSF[n, k, n− k + 1] = {(p(1), p(α), . . . , p(αn−1)) | p(X) ∈ F[X] has degree ≤ k − 1}

where α is the generator of the multiplicative group F∗ of F.1

Prove that

RSF[n, k, n− k + 1] = {(c0, c1, . . . , cn−1) ∈ Fn | c(α`) = 0 for 1 ≤ ` ≤ n− k ,

where c(X) = c0 + c1X + · · ·+ cn−1X
n−1} . (1)

(Hint : Prove that the identity
∑n−1

i=0 αji = 0 holds for all j, 1 ≤ j ≤ n − 1, and then
make use of it.)

(b) Recall that the [2r, r, 2r−1]2 Hadamard code is generated by the r × 2r matrix whose
ith (for 0 ≤ i ≤ 2r − 1) column is the binary representation of i. Briefly argue that
the Hadamard codeword for the message (m1,m2, . . . ,mr) ∈ {0, 1}r is the evaluation of
the (multivariate) polynomial m1X1 + m2X2 + · · ·+ MrXr (where X1, . . . , Xr are the r
variables) over all the possible assignments to the variables (X1, . . . , Xr) from {0, 1}r.
Using the definition of Hadamard codes above prove the fact that the code has distance
2r−1.
(Hint : First prove that for fixed vector (m1, . . . ,mr) ∈ {0, 1}r, The probability that∑r

i=1 miXi = 0 is exactly 1
2 (where the probability is over random assignment of values

to X1, . . . , Xr) and then make use of it.)

7. (BCH codes) In this problem you will look at a very important class of codes called BCH
codes2, which unfortunately we did not have time to study in class.

Let F = F2m . Consider the binary code CBCH defined as RSF[n, k, n− k + 1] ∩ Fn
2 .

(a) Prove that CBCH is a binary linear code of distance at least d = n−k +1 and dimension
at least n− (d− 1) log2(n + 1).
(Hint : Use the characterization (1) of the Reed-Solomon code.)

1This means that F∗ = F \ {0} = {1, α, . . . , αn−1}. Further, αn = 1.
2The acronym BCH stands for Bose-Chaudhuri-Hocquenghem, the discoverers of this family of codes.
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(b) Prove a better lower bound of n−
⌈

d−1
2

⌉
log2(n + 1) on the dimension of CBCH.

(Hint : Try to find redundant checks amongst the “natural” parity checks defining CBCH).

(c) For d = 3, CBCH is the same as another code we have seen. What is that code?

(d) (For your cognitive pleasure only; no need to turn this part in) For constant d (and grow-
ing n), prove that CBCH have nearly optimal dimension for distance d, in that the di-
mension cannot be n− t log2(n + 1) for t < d−1

2 .

8. (Rate of linear list-decodable codes) For 0 < p < 1 and a positive integer L, call a code
C ⊂ Σn to be (p, L)-list decodable if every Hamming ball of radius pn (in the space Σn) has
at most L codewords of C. Prove that for every finite field Fq, 0 < p < 1−1/q, integer L ≥ 1,
and large enough n, there is a (p, L)-list decodable linear code C ⊆ Fn

q that has rate at least
1−Hq(p)− 1

logq(L+1) − o(1).
(Hint : Apply the usual random coding method of picking a generator matrix at random. In
estimating the probability that L nonzero messages all get mapped into a ball of radius pn,
these L events are not all independent (and this is the difference compared to picking a general
random code). But at least how many of these events are independent of one another?)

9. (Intractability of Maximum Likelihood Decoding) I have mentioned a few times in class
that MLD is a notoriously hard decoding function to implement any faster than exponential
time. In this problem we will show that doing MLD for linear codes in general is NP-hard.
(This problem is for your cognitive pleasure only; no need to turn this problem in)

Given an undirected graph G = (V,E), consider the binary code CG ⊆ {0, 1}|E|, where every
codeword in CG corresponds to a cut in G. More precisely, every position in any vector in
{0, 1}|E| is associated with an edge in E. Let c ∈ CG be a codeword. Let Ec = {i ∈ E|ci = 1}.
Then Ec must correspond to exactly the edges in some cut of G.

(a) Prove that CG is a linear code.

(b) Prove that if one can do MLD on G in polynomial time then one can solve the Max-Cut
problem3 on G in polynomial time. Conclude that solving the MLD problem on linear
codes in general is NP-hard.
(Hint : Try to think of a vector y ∈ {0, 1}|E| such that solving MLD with received word
y for CG is equivalent to solving the Max-Cut problem on G.)

3Given a graph G = (V, E), a cut is a partition of the vertices into sets S ⊆ V and S = V \ S. The size of the cut
is the number of edges that have exactly one end-point in S and the other in S. The Max-Cut of G is a cut with the
maximum possible size. Max-Cut is a well known NP-hard problem.
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