Error Correcting Codes: Combinatorics, Algorithms and Applications

CSE 510C

August 27, 2006

Let's do some introductions

- Atri Rudra
 - 123 Bell Hall
 - <u>atri@cse.buffalo.edu</u>
 - □ 645-3180 x 117

Handouts for today

- Syllabus
- Feedback form
 - Also fill in the sheet being passed around with your name/email
- List of project topics

Plug for feedback forms

- Completing the form is voluntary
- Purpose of the form
 - Fix office hours
 - For me to get an idea of your technical background
- Last 5 minutes of the lecture to complete it

Questions/Comments?

 If something is broken on the blog (e.g. you cannot post a comment), let me know

Makeup classes

- Some classes will be canceled
 I will be traveling
 - a 3-4 classes
- Need two 90 mins makeup lectures
 Indicate your preferences in the feedback form
- September 17 class is cancelled

References

- No text book
- Best online resource: Madhu Sudan's lecture
 notes @ MIT

Introduction to Coding Theory

- Links on the course blog/webpageStandard coding theory texts
 - MacWilliams and Sloane
 - van Lint
 - Blahut
 - Handbook of coding theory

Scribing notes

- Every lecture notes will be scribed by a student (maybe give some extra details)
- 3-4 times during the course
- Depends on the class strength
- Use LaTeX
 - Style file on the webpage
- They are due in a week
- Notes will be graded on timeliness & quality

Homework

- 1-2 depending on other course load
- Collaboration generally allowed
 - Work in groups of size at most 3
 - Write up your own solutions
 - Acknowledge your collaborators
 - Breaking these rules will be considered as cheating
- More details when they are handed out

Project report

- Individual survey reports
- Handed out a list of suggested topics
 - Also linked from the course webpage/blog
 - Topics we will not cover in class (or will just briefly mention it)
 - You can also suggest your own topic
- An entry/topic on the blog
 - A brief description
 - □ Point out one/two key papers as a starting point

Project time line

- September 21
 - Last blog entry on a project topic
- October 19
 - Pick your topic
 - Submit a one page proposal
 - Short description of the survey
 - List of important papers that you are going to survey
- December 10
 - Final submission: hard deadline

Some comments

- See the post on projects on the blog
- Decide on a project topic early
 - Different topics might need different prep. Work
 Come talk to me
- Report should be a balance of
 - Classical work
 - Major results
 - State of the art

Some of my teaching "quirks"

- Neighbor talk time
- Periodic feedback forms
- Catch the instructor

Questions/Comments?

What does this say?

- W*Icome to the cl*ss. I h*pe you w*II h*ve as mu*h f*n as I wi*I hav* t*ach*ng it!
- Welcome to the class. I hope you will have as much fun as I will have teaching it!

Why did the example work?

- English has in built redundancy
- Can tolerate "errors"

- Complexity Theory
- Cryptography
- Algorithms

Structure of the course

- Part I: Combinatorics
 - $\hfill\square$ What can and cannot be done with codes
- Part II: Algorithms
 How to use codes efficiently
- Part III: Applications
 - Applications in theoretical Computer Science

The fundamental tradeoff

 Correct as many errors as possible while using as little redundancy as possible
 Intuitively, contradictory goals