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In the last lecture, we proved part (2) of Shannon’s capacity theorem for the binary symmetric
channel (BSC), which we restate here (throughout these notes we will use “e ∼ BSCp” as a
shorthand for “noise e from BSCp”):

Theorem 0.1. Let 0 ≤ p < 1
2

be a real number. For every 0 < ε ≤ 1
2
− p, the following statements

are true for large enough integer n:

1. There exists a real δ > 0, and encoding function E : {0, 1}k → {0, 1}n, and a decoding
function D : {0, 1}n → {0, 1}k, where k ≤ b(1−H (p + ε)) nc such that the following
holds for every m ∈ {0, 1}k:

Pr
e∼BSCp

[D (E (m) + e) 6= m] ≤ 2−δn

2. If k ≥ d(1−H (p) + ε) ne then for every encoding function E : {0, 1} → {0, 1}n and
decoding function D : {0, 1}n → {0, 1}k the following is true for some m ∈ {0, 1}k:

Pr
e∼BSCp

[D(E(m) + e) 6= m] ≥ 1

2

In today’s lecture, we will prove part (1) of Theorem 0.1

1 Proof overview
The proof of part (1) of Theorem 0.1 will be accomplished by randomly selecting an encoding
function E : {0, 1}k → {0, 1}n. That is, for every m ∈ {0, 1}k pick E (m) uniformly and inde-
pendently at random from {0, 1}n. D will be the maximum likelihood decoding (MLD) function.
The proof will have the following two steps:

1. Step 1: For any arbitrary m ∈ {0, 1}k, we will show that for a random choice of E, the
probability of failure, over BSCp noise, is small. This implies the existence of a good
encoding function for any arbitrary message.

2. Step 2: We will show a similar result for all m. This involves dropping half of the code
words.
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The proof method above has its own name– “random coding with expurgation.”
Note that there are two sources of randomness in the proof:

1. Randomness in the choice of encoding function E and

2. Randomness in the noise.

We stress that the first kind of randomness is for the probabilistic method while the second kind
of randomness will contribute to the decoding error probability.

2 “Proof by picture” of Step 1

Before proving part (1) of Theorem 0.1, we will provide a pictorial proof of Step 1. We begin by
fixing m ∈ {0, 1}k. In Step 1, we need to estimate the following quantity:

EE

[
Pr

e∼BSCp

[D (E (m) + e) 6= m]

]
.

By the Chernoff bound, with all but an exponentially small probability, the received word
will be contained in a Hamming ball of radius (p + ε′) n (for some ε′ > 0 that we will choose
appropriately). So one can assume that the received word y whp satisfies ∆(E(m),y) ≤ (p +
ε′)n. Given this, pretty much the only thing to do is to estimate the decoding error probability for
such a y. Note that by the fact that D is MLD, an error can happen only if there exists another
message m′ such that ∆(E(m′),y) ≤ ∆(E(m),y). The latter event is implied by the event that
∆(E(m′),y) ≤ (p + ε′)n (see Figure 2). Thus, the decoding error probability is upper bounded
by

Pr
e∼BSCp

[E (m′) ∈ B2 (y, (p + ε′) n)] =
|B2 (E (m′) , (p + ε′) n)|

2n
≈ 2H(p)n

2n
.

Finally, by the union bound, the existence of such a “bad” m′ is upper bounded by ≈ 2k2nH(p)

2n ,
which by our choice of k is 2−Ω(n), as desired.

2.1 A Digression: An Additive Chernoff Bound
We have seen a “multiplicative” form of the Chernoff bound. Today we will use the following
“additive” form of the Chernoff bound. Let X1, . . . , Xn be independent 0 − 1 random variables
which take a value of 1 with probability p. Then for small enough γ > 0, Pr[

∑
i Xi ≥ (p+γ)n] ≤

e−γ2n/2.
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Figure 1: Hamming balls of radius (p + ε′) n and centers E (m) and y illustrates Step 1 in the
proof of part (2) of Shannon’s capacity theorem for the BSC.

3 Proof of first part of Shannon’s Theorem
For notational convenience, we will use y and E (m) + e interchangeably:

y = E (m) + e.

That is, y is the received word when E (m) is transmitted and e is the error pattern.
We start the proof by restating the decoding error probability in part (1) of Shannon’s capacity

theorem for the BSC (Theorem 0.1) by breaking up the quantity in two two sums:

Pr
e∼BSCp

[D (E (m) + e) 6= m] =
∑

y∈B(E(m),(p+ε′)n)

Pr[y|E(m)] · lD(y) 6=m

+
∑

y 6∈B(E(m),(p+ε′)n)

Pr[y|E(m)] · lD(y) 6=m,

where 1D(y) 6=m is the indicator function for the event that D(y) 6= m given that E(m) was the
transmitted codeword and we use y|E(m) as a shorthand for “y is the received word given that
E(m) was the transmitted codeword.” As 1D(y) 6=m ≤ 1 (since it takes a value in {0, 1}) and by the
(additive) Chernoff bound we have

Pr
e∼BSCp

[D (E (m) + e) 6= m] ≤
∑

y∈B(E(m),(p+ε′)n)

Pr[y|E(m)] · lD(y) 6=m + e−(ε′)2n/2.

In order to apply the probabilistic method, we will analyze the expectation (over the random
choice of E) of the decoding error probability, which by the upper bound above satisfies

EE

[
Pr

e∼BSCp

[D (E (m) + e) 6= m]

]
≤ e−ε′2n/2+

∑
y∈B(E(m),(p+ε′)n)

Pr
e∼BSCp

[y|E(m)]·EE

[
1D(y) 6=m

]
.

(1)
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Next, for a fixed received word y and the transmitted codeword E(m) such that ∆(y, E(m)) ≤
(p + ε′)n we estimate EE[1D(y) 6=m]. Since D is MLD, we have

EE

[
1D(y) 6=m

]
= PrE

[
1D(y) 6=m|E(m)

]
≤

∑
m′ 6=m

Pr [∆ (E (m′) ,y) ≤ ∆ (E (m) ,y) |E(m)] ,

(2)
where in the above “|E(m)” is short for “being conditioned on E(m) being transmitted” and the
inequality follows from the union bound and the fact that D is MLD.

Noting that ∆(E(m′,y) ≤ ∆(E(m),y) ≤ (p + ε′)n (see Figure 2), by (2) we have

EE

[
1D(y) 6=m

]
≤

∑
m′ 6=m

Pr [E (m′) ∈ B (y, (p + ε′) n) |E(m)]

=
∑

m′ 6=m

|B (y, (p + ε′) n)|
2n

(3)

≤
∑

m′ 6=m

2H(p+ε′)n

2n
(4)

≤2k · 2−n(1−H(p+ε′))

≤2n(1−H(p+ε))−n(1−H(p+ε′)n) (5)

=2−n(H(p+ε)−H(p+ε′)) (6)

In the above (3) follows from the fact that the choice for E(m′) is independent of E(m). (4)
follows from the upper bound on the volume of a Hamming ball that we have seen before while
(5) follows from our choice of k.

Using (6) in (1), we get

EE

[
Pr

e∼BSCp

[D(E(m) + e) 6= m)]

]
≤e−ε′2n/2 + 2−n(H(p+ε)−H(p+ε′))

∑
y∈B(E(m),(p+ε′)n

Pr[y|E(m)]

≤e−ε′2n/2 + 2−n(H(p+ε)−H(p+ε′)) ≤ 2−δ′n,

where the second inequality follows from the fact that
∑

y∈{0,1}n Pr[y|E(m)] = 1 while the last
inequality follows for large enough n by picking δ′ > 0 small enough (and say ε′ = ε/2).

Thus, we have show that for any arbitrary m the average (over the choices of E) decoding
error probability is small. However, we still need to show that the decoding error probability is
exponentially small for all messages simultaneously. Further, as the bound holds for each m we
have

Em

[
EE

[
Pr

e∼BSCp

[D (E (m) + e) 6= m]

]]
≤ 2−δ′n

The order of the summation in the expectation with respect to m and the summation in the
expectation with respect to the choice of E can be switched (as the probability distributions are
defined over different domains), resulting in the following expression:
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EE

[
Em

[
Pr

e∼BSCp

[D (E (m) + e) 6= m]

]]
≤ 2−δ′n

By the probabilistic method, there exists an encoding function E∗ (and a corresponding decod-
ing function D∗) such that

Em

[
Pr

e∼BSCp

[D∗ (E∗ (m) + e) 6= m]

]
≤ 2−δ′n (7)

(7) implies that the average decoding error probability is exponentially small. However, recall
we need to show that the maximum decoding error probability is small. To achieve such a result,
we will throw away half of the messages, i.e. “expurgate” the code. In particular, we will order
the messages in decreasing order of their decoding error probability and then drop the top half.
We claim that the maximum decoding error probability for the remaining messages is 2 · 2δ′n (this
essentially is Markov’s inequality and is generally called the “averaging argument”). We will flesh
out this latter argument in the next lecture.
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