
Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007)

Lecture 13: List Decoding
October 1, 2007

Lecturer: Atri Rudra Scribe: Thanh-Nhan Nguyen & Atri Rudra

In previous lectures, we have seen the following bound for unique decoding (for worst-case errors):

p ≤ 1−R

2

and the capacity bound for qSCp (for stochastic errors):

p ≤ H−1
q (1−R) ∼ 1−R (for large q).

Note that there is a gap between what we can achieve for worst-case errors and stochastic errors. In
this lecture, we extend the notion of unique decoding to give the decoder the flexibility to output a
list of candidate transmitted codewords. This will allow us to bridge the gap in the Shannon world
and the Hamming world.

1 List Decoding
The new notion of decoding that we will discuss is called list decoding as the decoder is allowed
to output a list of answers. We now formally define (the combinatorial version of) list decoding:

Definition 1.1. Given 0 ≤ ρ ≤ 1, L ≥ 1, a code C ⊆ Σn is (ρ, L)-list decodable if for every
received word y ∈ Σn,

| {c ∈ C|∆(y, c) ≤ ρn} | ≤ L

Given an error parameter ρ, a code C and a received word y, a list-decoding algorithm should
output all codewords in C that are within (relative) Hamming distance ρ from y. Note that if the
fraction of errors that occurred during transmission is at most ρ then the transmitted codeword
is guaranteed to be in the output list. Further, note that if C is (ρ, L)-list decodable then the
algorithm will always output at most L codewords for any received word. In other words, for
efficient list-decoding algorithm, L should be a polynomial in the block length n (as otherwise the
algorithm will have to output a super-polynomial number of codewords and hence, cannot have
a polynomial running time). Thus, the restriction of L being at most some polynomial in n is
an a priori requirement enforced by the fact that we are interested in efficient polynomial time
decoding algorithms. Another reason for insisting on a bound on L is that otherwise the decoding
problem can become trivial: for example, one can output all the codewords in the code. Finally,
it is worthwhile to note that one can always have an exponential time list-decoding algorithm: go
through all the codewords in the code and pick the ones that are within ρ Hamming distance of the
received word.

Note that in the communication setup, we need to recover the transmitted message. In such a
scenario, outputting a list might not be useful. There are two ways to get around this “problem”:

1

1. Declare a decoding error if list size > 1. Note that this generalizes unique coding (as when
the number of errors is at most half the distance of the code then there is a unique codeword
and hence, the list size will be at most one). However, the gain over unique decoding would
be substantial only if for most error patterns (of weight significantly more than half the
distance of the code) the output list size is at most one. Fortunately, it can be show that:

• For random codes, with high probability, for most received words, the list size is at
most one. In other words, for most codes, we can hope to see a gain over unique
decoding. The proof of this fact follows from Shannon’s proof for the capacity for
qSC: the details are left as an exercise.

• The result above is for random codes, which lack structure and it seems difficult to
come up with efficient algorithm for such codes. It would be nice, if we could have
a result similar to the above for some explicit code. Such results are known and in
particular, it was shown by McEliece that a similar result holds for Reed-Solomon
codes [2].

Thus, using this option to deal with multiple answers, we still deal with worse case errors
but can correct more error patterns than unique decoding.

2. If decoder has access to some side information, then it can use that to prune the list. In
applications of list decoding in complexity theory (see for example [3],[1, Chap. 12]), side
information is used crucially.

2 List-Decoding Capacity
Next, we will prove the following result concerning the optimal trade-off between rate of a code
and the fraction of errors that can be corrected via list decoding.

Theorem 2.1. Let q ≥ 2, 0 ≤ p < 1− 1
q
, and ε > 0. Then the following holds for codes of large

enough block length n:

(i) If R ≤ 1−Hq(p)− ε, then there exists a (p, O(1
ε
))-list decodable code.

(ii) If R > 1−Hq(p) + ε, every (ρ, L)-list decodable code has L ≥ qΩ(n).

Thus, the List-decoding capacity1 is 1 − Hq(p) (where p is the fraction of errors). Note that
this exactly matches capacity for qSCp and hence, list decoding can be seen as a bridge between
Shannon’s world and Hamming’s world.

We will now give the basic idea behind the proof of part (i) of the theorem. The actual proof
will be done in the next lecture.

1Actually the phrase should be something like “capacity of worst case noise model under list decoding” as the
capacity is a property of the channel. However, in the interest of brevity we will only use the term list-decoding
capacity.

2

As in Shannon’s proof for capacity of BSCp, we will pick a random code and show that it
satisfies the required property with non-zero probability. In fact, we will show that a random code
is (ρ, L)-list decodable with high probability as long as:

R ≤ 1−Hq(p)− 1

L

The analysis will proceed by proving that probability of a “bad event” is small. “Bad event” means
there exist messages m0,m1, · · · ,mL ∈ [q]Rn and a received code y ∈ [q]n such that:

∆ (C(mi),y)) ≤ ρn, for every 0 ≤ i ≤ L

The probability of any bad event happening will then be calculated by an application of the union
bound.

References
[1] Venkatesan Guruswami. List decoding of error-correcting codes. Number 3282 in Lecture

Notes in Computer Science. Springer, 2004. (Winning Thesis of the 2002 ACM Doctoral
Dissertation Competition).

[2] Robert J. McEliece. On the average list size for the Guruswami-Sudan decoder. In 7th Inter-
national Symposium on Communications Theory and Applications (ISCTA), July 2003.

[3] Madhu Sudan. List decoding: Algorithms and applications. SIGACT News, 31:16–27, 2000.

3

	List Decoding
	List-Decoding Capacity

