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In the last lecture we proved the GV bound, which states that for all δ with 0 ≤ δ ≤ 1− 1
q
, there

exists aq-ary code of distanceδ and rate at least1−Hq(δ)− ε, for everyε > 0. In fact we proved
that with high probability, a random linear codeC lies on the GV bound. We picked a generator
matrix G at random and proved the latter result. At this point, we might ask what happens ifG
does not have full rank?

There are two ways to deal with this. First, we can show that with high probabilityG does have
full rank, so that|C| = qk. However, the proof from last lecture already showed that, with high
probability, the distance is greater than zero, which implies that distinct messages will be mapped
to distinct codewords and thus|C| = qk.

Further, the proof required thatδ ≤ 1 − 1
q

because it is needed for the volume bound –

V olq(0, δn) ≤ qHq(δ)n– to hold. It is natural to wonder if the above is just an artifact of the
proof or, for example, is it possible to getR > 0 andδ > 1 − 1

q
? In today’s lecture, we will show

that this cannot be the case by proving the Plotkin bound.

1 Plotkin Bound

We start by stating the Plotkin bound.

Theorem 1.1 (Plotkin bound). The following holds for anyC ⊆ [q]n with distanced:

1. If d = (1 − 1
q
)n, |C| ≤ 2qn.

2. If d > (1 − 1
q
)n, |C| ≤ qd

qd−(q−1)n
.

Note that the Plotkin bound implies that a code with relativedistanceδ ≥ 1 − 1
q
, must neces-

sarily haveR = 0.

Remark 1.2. The upper bound in the first part of Theorem 1.1 can be improvedto 2n for q = 2,
which is tight. Recall that the Hadamard code is a[n, log n, n

2
]2 code. If we add the complement

of each codeword, then it can be shown that the distance of thenew code is stilln
2
. This new code

proves that part 1 of Theorem 1.1 is tight.

The statement of Theorem 1.1 gives a trade-off only for relative distance greater than1 − 1/q.
However, as the following corollary shows, the result can beextended to work for0 ≤ δ ≤ 1−1/q:

Corollary 1.3. For anyq-ary code with distanceδ, R ≤ 1 −
(

q

q−1

)

δ + o(1).
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Proof. The proof proceeds by shortening the codewords. We group thecodewords so that they
agree on the firstn − n′ places, wheren′ = ⌊ qd

q−1
⌋ − 1. In particular, for anyx ∈ [q]n−n′

, define

Cx = {(cn−n′+1, . . . cn) | (c1 . . . cN) ∈ C, (c1 . . . cn−n′) = x}.

Defined = δn. For allx, Cx has distanced asC has distanced.1 Additionally, it has block length
n′ < ( q

q−1
)d and thus,d > (1 − 1

q
)n′. By Theorem 2.1, this implies that

|Cx| ≤
qd

qd − (q − 1)n′
≤ qd, (1)

where the second inequality follows from the facts thatd > (1− 1/q)n′ and thatqd− (q − 1)n′ is
an integer.

Note that by the definition ofCx:

|C| =
∑

x∈[q]n−n′

|Cx|,

which by (1) implies that

|C| ≤
∑

x∈[q]n−n′

qd = qn−n′

· qd ≤ qn−
q

q−1
d+o(n).

In other words,R ≤ 1 −
(

q

q−1

)

δ + o(1) as desired.

Remark 1.4. Corollary 1.3 implies that for anyq-ary code of rateR and relative distanceδ (where
q is aconstantindependent of the block length of the code),R < 1− δ. In other words, such codes
cannot meet the Singleton bound.

Let us pause for a bit at this point and recollect the bounds onR versusδ that we have proved
till now. Figure 1 depicts all the bounds we have seen till now(for q = 2). The GV bound is
the best known lower bound till date. Better upper bounds areknown and we will see one such
trade-off (called the Elias-Bassalygo bound) in a few lectures.

We now turn to the proof of Theorem 2.1, for which we will need two more lemmas.
The first lemma deals with vectors over real spaces. We quickly recap the necessary definitions.

Consider a vectorv in R
n, that is, a tuple ofn real numbers. This vector has (Euclidean) norm

‖v‖ =
√

v2
1 + v2

2 + . . . + v2
n, and is a unit vector if and only if its norm is1. The inner product of

two vectors,u andv, is 〈u,v〉 =
∑

i uivi.

Lemma 1.5 (Geometric Lemma). Letv1,v2, . . . ,vm ∈ R
n be non-zero vectors.

1. If 〈vi,vj〉 ≤ 0 for all i 6= j, thenm ≤ 2n

1If for somex, c1 6= c2 ∈ Cx, ∆(c1, c2) < d, then∆((x, c1), (x, c2)) < d, which implies that the distance ofC

is less thand (as by definition ofCx, both(x, c1), (x, c2) ∈ C).
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Figure 1: The current bounds on the rateR vs. relative distanceδ for binary codes. The GV bound
is a lower bound on rate while the other three bounds are upperbounds onR.

2. Letvi be unit vectors for1 ≤ i ≤ m. Further, if 〈vi,vj〉 ≤ −ε ≤ 0 for all i 6= j, then
m ≤ 1 + 1

ε

We will prove the lemma in the next lecture.

Lemma 1.6. There is a one-to-one mapf : C → R
nq such that for allc ∈ C, ‖f(c)‖ = 1 and for

all c1 6= c2 ∈ C, 〈f(c1), f(c2)〉 ≤ 1 − ( q

q−1
)(∆(c1,c2

n
).

We will also prove this lemma in the next lecture. We are now ina position to prove Theo-
rem 1.1.
Proof of Theorem 1.1 Let{c1, c2, . . . , cm} = C. For alli 6= j, 〈f(ci), f(cj)〉 ≤ 1−( q

q−1
)

∆(ci,cj)

n
≤

1 − ( q

q−1
) d

n
. The first inequality holds by Lemma 1.6, and the second holdsasC has distanced.

For part 1, ifd = (1 − 1
q
)n = (q−1)n

q
, then for alli 6= j, 〈f(ci), f(cj)〉 ≤ 0 and so by the first

part of Lemma 1.5,m ≤ 2nq.

For part 2,d >
(

q−1
q

)

n and so for alli 6= j, 〈f(ci), f(cj)〉 ≤ 1− ( q

q−1
) d

n
= −( qd−(q−1)n

(q−1)n
) and,

since( qd−(q−1)n
(q−1)n

) = ε > 0, we can apply the second part of Lemma 1.5. Thus,m ≤ 1+ (q−1)n
qd−(q−1)n

=
qd

qd−(q−1)n
. 2
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