Error Correcting Codes. Combinatorics, Algorithmsand Applications (Fall 2007)

Lecture 16: Plotkin Bound
October 2, 2007
Lecturer: Atri Rudra Scribe: Nathan Russell & Atri Rudfra

In the last lecture we proved the GV bound, which states thadlfo with0 < ¢ < 1-— % there
exists ag-ary code of distancé and rate at least— H,(J) — ¢, for everye > 0. In fact we proved
that with high probability, a random linear codélies on the GV bound. We picked a generator
matrix G at random and proved the latter result. At this point, we rmagk what happens @&
does not have full rank?

There are two ways to deal with this. First, we can show th#t high probabilityG does have
full rank, so thatC| = ¢*. However, the proof from last lecture already showed thith Wigh
probability, the distance is greater than zero, which iegpthat distinct messages will be mapped
to distinct codewords and thli§| = ¢*.

Further, the proof required that < 1 — % because it is needed for the volume bound —

Vol,(0,6n) < ¢"«®"—to hold. It is natural to wonder if the above is just an adifaf the
proof or, for example, is it possible to g&t> 0 andé > 1 — %? In today’s lecture, we will show
that this cannot be the case by proving the Plotkin bound.

1 Plotkin Bound

We start by stating the Plotkin bound.
Theorem 1.1 (Plotkin bound) The following holds for ang’ C [¢]™ with distance:
1. Ifd=(1- %)n,

C| < 2gn.

2. Ifd> (1 -3, |C| < —2
q

gd—(g—1)n’

Note that the Plotkin bound implies that a code with relatlistance) > 1 — % must neces-
sarily haveR = 0.

Remark 1.2. The upper bound in the first part of TheorEml 1.1 can be impréwed for ¢ = 2,
which is tight. Recall that the Hadamard code igalogn, 5], code. If we add the complement
of each codeword, then it can be shown that the distance ofatecode is stilk. This new code
proves that part 1 of Theorefm 1.1 is tight.

The statement of Theoredm1L.1 gives a trade-off only for iedalistance greater than— 1/q.
However, as the following corollary shows, the result caextended to work fod < § < 1—1/¢:

Corollary 1.3. For anyg-ary code with distancé, R < 1 — (ﬁ) d+o(1).
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Proof. The proof proceeds by shortening the codewords. We groupdbewords so that they
agree on the first — »n’ places, where’ = Lq‘l_—dlj — 1. In particular, for anyr € [¢]"~", define

Co ={(ch—ns1,---cn) | (c1...cn) €C (c1...Cpn_p) = x}.

Defined = én. For allz, C, has distancé asC' has distancefi Additionally, it has block length

n' < (;4)d and thusd > (1 — %)n’. By Theorem 2.1, this implies that

Ol < ——— < qd, 1
|Cal d—(q—Dw =1 (1)
where the second inequality follows from the facts that (1 — 1/¢)n" and thayd — (¢ — 1)n’ is

an integer.
Note that by the definition of’,:

Cl= > |G,

zelgn

which by 1) implies that

|C| < Z qd _ qn—n’ ) qd < qn—#d—iﬂ(n).

ze[gn—n

In other words R < 1 — (ﬁ) d + o(1) as desired. O

Remark 1.4. Corollary[L.3 implies that for any-ary code of ratek? and relative distancé (where
q is aconstanindependent of the block length of the code): 1 — 4. In other words, such codes
cannot meet the Singleton bound.

Let us pause for a bit at this point and recollect the bound® errsusj that we have proved
till now. Figure[d depicts all the bounds we have seen till (fov ¢ = 2). The GV bound is
the best known lower bound till date. Better upper boundskamvn and we will see one such
trade-off (called the Elias-Bassalygo bound) in a few lextu

We now turn to the proof of Theorem 2.1, for which we will neagtmore lemmas.

The first lemma deals with vectors over real spaces. We quieklap the necessary definitions.
Consider a vectov in R”, that is, a tuple of: real numbers. This vector has (Euclidean) norm
|v|| = \/v? +vZ + ...+ 02, and is a unit vector if and only if its norm is The inner product of
two vectorsu andv, is (u, v) = >, u;v;.

Lemma 1.5 (Geometric Lemma)Letvy, va, ..., v, € R" be non-zero vectors.

1. If (vi,v;) < Oforall i # j, thenm < 2n

Lif for somex, ¢; # co € Cy, Acy,c2) < d, thenA((x,cy), (x,c2)) < d, which implies that the distance 6f
is less thanl (as by definition of’,, both(z, c1), (z,c2) € C).
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Figure 1: The current bounds on the réiess. relative distancé for binary codes. The GV bound
is a lower bound on rate while the other three bounds are uppands onk.

2. Letv; be unit vectors forl < ¢ < m. Further, if (v;,v;) < —e < 0for all i # j, then
m<1+ é

We will prove the lemma in the next lecture.

Lemma 1.6. There is a one-to-one mafp: C — R"? such that for allc € C, || f(c)|| = 1 and for
all c; #ca € C,(f(c1), f(ca)) <1— (ﬁ)(A(c;,cz).

We will also prove this lemma in the next lecture. We are nova iposition to prove Theo-
rem[L].
Proof of TheoremLLet{c1,co,...,cm} = C. Foralli # j, (f(ci), f(c;)) < 1— (L) Alee) <

q—1 n —
1-— (%)g. The first inequality holds by Lemnia.6, and the second hadd% has distancd.
For part 1, ifd = (1 — %)n = @ then for alli # j, (f(ci), f(c;)) < 0 and so by the first

part of Lemmd L5 < 2ng.
For part 2,d > (%1) nand so for ali # j, (f(ci), f(¢;)) <1 — (-45)4 = —(2-le-Yny gnq,

g—1/n (g—1)n
since(%) = ¢ > 0, we can apply the second part of Lemimd 1.5. Thus; 1+7qd(f@1_)7f)n =
qd
gd—(g=Dn" -
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