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In the last lecture, we proved the Plotkin bound, except for a couple of lemmas which we will
prove in this lecture.

1 Geometric Lemma
The proof of the Plotkin bound needed the existence of a map from codewords to real vectors with
certain properties, which the next lemma guarantees.

Lemma 1.1. Let C ⊆ [q]n. Then there exists a function f : C −→ Rnq such that

1. For every c ∈ C, ‖f(c)‖ = 1.

2. For every c1 6= c2 ∈ C, 〈f(c1), f(c2)〉 = 1−
(

q
q−1

) (
∆(c1,c2)

n

)
.

We also used the following lemma, which gives a bound on the number of vectors that can
exists such that every pair is at an obtuse angle with each other.

Lemma 1.2 (Geometric Lemma). Let v1, v2, . . . , vm ∈ Rn.

1. If v1, v2, . . . , vm are all non-zero and 〈vi, vj〉 ≤ 0 for all i 6= j, then m ≤ 2n.

2. If v1, v2, . . . , vm are unit vectors and 〈vi, vj〉 ≤ −ε < 0 for every i 6= j, then m ≤ 1 + 1/ε.

Next, we prove the two lemmas above.

Proof of Lemma 1.1. We begin by picking a map φ : [q] → Rq with certain properties. Then
we apply φ to all the coordinates of a codeword to define the map f : C → Rnq that satisfies the
claimed properties. We now fill in the details.

We begin by defining the map φ : [q] → Rq. For every i ∈ [q], define

φ(i) =

〈
1

q
,
1

q
, . . . ,

−(q − 1)

q︸ ︷︷ ︸
ithposition

, . . .
1

q

〉
,

that is all but the ith position in φ(i) ∈ Rq has a value of 1/q and the ith position has value
−(q − 1)/q.
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Next, we record two properties of φ that follow immediately from its definition. For every
i ∈ [q],

||φ(i)||2 =
(q − 1)

q2
+

(q − 1)2

q2
=

(q − 1)

q
. (1)

Also for every i 6= j ∈ [q],

〈φ(i), φ(j)〉 =
(q − 2)

q2
− 2(q − 1)

q2
= −1

q
(2)

We are now ready to define our final map f : C → Rnq. For every c = (c1, . . . , cn) ∈ C, define

f(c) =

√
q

n(q − 1)
· 〈φ(c1), φ(c2), . . . , φ(cn)〉.

To complete the proof, we will show that f satisfies the claimed properties. We begin with
condition 1. Note that

‖f(c)‖2 =
q

(q − 1)n
·
∑

i

‖φ(i)‖2 = 1,

where the first equality follows from the definition of f and the second equality follows from (1).
We now turn to the second condition. We claim

〈f(c1), f(c2)〉 =

[
∆(c1, c2)

(
−1

q

)
+ (n−∆(c1, c2))

(
q − 1

q

)]
·
(

q

n(q − 1)

)
(3)

= 1−∆(c1, c2)

(
q

n(q − 1)

) [
−1

q
− q − 1

q

]
= 1−

(
q

q − 1

) (
∆(c1, c2)

n

)
,

as desired. In the above, (3) is obtained using (2), (1) and the definition of the Hamming distance.
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Proof of Lemma 1.2. We begin with a proof of the first result. The proof is by induction on
n. Note that in the base case of n = 0, we have m = 0, which satisfies the claimed inequality
m ≤ 2n.

In the general case, we have m ≥ 1 non-zero vectors v1, . . . ,vm ∈ Rn such that for every
i 6= j,

〈vi, vj〉 ≤ 0 (4)

By a change of basis, we can assume that vm = 〈1, 0, . . . , 0〉. For 1 ≤ i ≤ m − 1, denote the
vectors as vi = 〈αi,yi〉, for some αi ∈ R and yi ∈ Rn−1. Note that by (4), αi ≤ 0.

Next, we claim that at most one of y1, . . . ,ym−1 can be the all zero vector, 0. If not, assume
w.l.o.g., that y1 = y2 = 0. As v1 and v2 are non-zero, α1, α2 < 0. This in turn implies that

〈v1,v2〉 = α1 · α2 > 0,
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which is a contradiction. W.l.o.g., assume that v1, . . . ,vm−2 are all non-zero vectors. Further, note
that for every i 6= j ∈ [m−2], 〈yi,yj〉 = 〈vi,vj〉−αi ·αj ≤ 〈vi,vj〉 ≤ 0. Thus, we have reduced
problem on m vectors with dimension n to an equivalent problem on m−2 vectors with dimension
n − 1.1 If we continue this process, we can conclude that every loss in dimension of the vector
results in twice in loss in the numbers of the vectors in the set. Induction completes the proof.

We now move on to the proof of the second part. Towards that end, define z = v1 + . . . + vm.
Now consider the following sequence of relationships:

‖z‖2 =
m∑

i=1

‖vi‖2 + 2
∑
i<j

〈vi,vj〉 ≤ m + 2 ·
(

m

2

)
· (−ε) = m(1− εm + ε).

The inequality follows from the facts that each vi is a unit vector and the assumption that for every
i 6= j, 〈vi.vj〉 ≤ −ε. As ‖z‖2 ≥ 0,

m(1− εm + ε) ≥ 0.

Thus, we have m ≤ 1 + 1
ε
, as desired. 2

2 Johnson Bound
Next lecture, we will look at another bound called Johnson bound. To get the ball rolling, let us fix
an important notation. Define J(n, d, e) to be the maximum number of codewords in a Hamming
ball of radius e for any code with distance d and block length n. As a warm up, we have already
seen that for every 0 ≤ d ≤ n, J

(
n, d, bd−1

2
c
)

= 1. Note that if we can show that for some
e > bd−1

2
c, 0 ≤ e ≤ n, J(n, d, e) is nO(1), then it will imply that (at least combinatorially) list

decoding is possible for any code beyond the “traditional” half the distance bound. The Johnson
bound shows the existence of such an e.

1It could be the case that all of y1, . . . ,ym−1 are non-zero in which case we go down from m vectors to m − 1
vectors. However, by throwing away two vectors, we only get a “weaker” upper bound. Actually it is not too hard to
see that if the original set of vectors are the 2n vectors, one along each dimension (and its negation) then in each step
of the induction m will go down by exactly 2.
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