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As was mentioned in the last lecture, the fundamental tradeoff we are interested in for this
course is the one between the amount of redundancy in the code vs. the number of errors that it
can correct. We defined the notion of rate of a code to capture the amount of redundancy. However,
before we embark on a systematic study of the tradeoff above, we need to formally define what it
means to correct errors. We do so next.

1 Error correction
Before we define what we mean by error correction, we formally define the notion of encoding.

Definition 1.1 (Encoding function). Let
�������

. An equivalent description of the code
�

is by
an injective mapping �	��
� � � ��� � � called encoding function.

Next we move to error correction. Intuitively, we can correct a received word if we can recover
the transmitted codeword (or equivalently the corresponding message). This “reverse” process is
achieved by decoding.

Definition 1.2 (Decoding function). Let
�������

be a code. A mapping ��� ��� � 
� � � � is called
a decoding function for

�
.

The definition of a decoding function by itself does not give anything interesting. What we
really need from a decoding function is that it recovers the transmitted message. This notion is
captured next.

Definition 1.3 (Error Correction). Let
����� �

and let ����� be an integer.
�

is said to be � -
error-correcting if there exists a decoding function � such that for every error message ����
�� � � �
and error pattern � with at most � errors, � � � �!� "$#%�&"(')� .

Figure 1 illustrates how the definitions we have examined so far interact.
We will also very briefly look at a weaker form of error recovery called error detection.

Definition 1.4 (Error detection). Let
�*�����

and let �+�,� be an integer.
�

is said to be � -
error-detecting if for every message � and every error pattern � with at most � errors, there is a
procedure that can decide if � � �!� "$#%�&"-� � .

Note that a � -error correcting code is also a � -error detecting code (but not necessarily the other
way round). Although error detection might seem like a weak error recovery model, it is useful in
settings where the receiver can ask the sender to re-send the message. For example, error detection
is used quite heavily in the Internet.

With the above definitions in place, we are now ready to look at the error correcting capabilities
of the codes we looked at in the previous lecture.
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Figure 1: Coding process

2 Parity and Repetition codes
In the last lecture, we looked at examples of parity code and repetition code, with the following
properties:

�/. �102'4365879'):�5<;='4>65@?�'):BAC>6D�-EGF HJIK �102'�3B5L7M'N:O5G;='P�Q365@?�'P�RATS6D
We will start with the repetition code. To study its error correcting capabilities, we will consider

the following natural decoding function. Given a received word U+�WV&XY5Z�T[B\^] , divide it up into four
consecutive blocks �!U \ 5GU ] 5<U E 5<UT_Z" , where every block consists of three bits. Then for every block Ua`
( �cbNd-bN: ), output the majority bit as the message bit. Now we claim that this decoding function
can correct any error pattern with at most � error. This is easy to verify. For example, if a block ofXY�eX is received, we know the original message bit should be X because there are two X s. In other
words, we have argued that

Proposition 2.1.
�/EGF HJIK

is a � -error correcting code.

However, it is not too hard to see that
�fEgF HJIK

cannot correct 3 errors. For example, if both the
errors happen in the same block and a block in the received word is X6�eX then the original block
in the codeword could have been either �C�a� or XaXaX . Thus no decoder can successfully recover the
transmitted message in this case. (Recall we are assuming that the decoder has no side information
about the transmitted message.)

Thus, we have pin-pointed the error correcting capabilities of the
�hEGF HJIK

code: it can correct �
error but no more. However, note that the argument assumed that the error positions can be located
arbitrarily. In other words, we are assuming that the channel noise behaves arbitrarily (subject to
a bound on the total number of errors). Obviously, we can model the noise differently. We now
briefly digress to look at this issue in slightly more detail.

2.1 Digression: Channel Noise
As was mentioned above, until now we have been assuming the following noise model that was
studied by Hamming [2]:
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Any error pattern can occur during transmission as long as the total number of errors
is bounded. Note that this means that the location as well as the nature1 of the errors
are arbitrary.

We will frequently refer to Hamming’s model as the Adversarial Noise Model.
We could also have following error model.

No more than � error can happen in any contiguous S bit block.

First note that for the channel model above, no more than 4 errors can occur when a codeword in�-EgF HJIK
is transmitted. Second, note that the decoding function that takes a majority vote in each

block, can always successfully recover the transmitted codeword for any error pattern (while in the
worst case noise model it could only correct at most � error). This channel model is admittedly a bit
contrived but it illustrates the point that the error correcting capabilities of a code (and a decoding
function) crucially depends on the noise model.

An alternate way to model the noise than Hamming’s way is to model the channel as a stochas-
tic process. As a concrete example, we briefly mention the binary symmetric channel with crossover
probability X bNijb�� , denoted by k�l �mK which was first studied by Shannon [1]. In this model
when a (binary) codeword is transferred through the channel, every bit flips independently with
probability i . We note that we only need to consider i in the range 
nXY5Z�RAC3&� .2

Note that the two noise models proposed by Hamming and Shannon are in some sense two
extremes: Hamming’s model assumes no knowledge about the channel (except that a bound on
the total number of errors is known) while Shannon’s noise model (for example k�l �oK ) assumes
complete knowledge about how noise is produced in the channel. In this course, we will consider
only these two extreme noise models. In real life, the situation sometimes is in the “middle.” If you
are interested in such channels, one such hybrid model called Arbitrary Varying Channel is one of
the suggested project topics.

We now return back to
�f.

and look at its error correcting capabilities in the worst case noise
model. We claim that

�f.
cannot correct even one error. Suppose X6�eXaXaX is the received word,

then we know that an error has occurred but we do not know which bit was flipped. The two
codewords XaXaXaXaX and XY�eXCXY� can both give rise to the received word XY�eXaXCX when exactly one bit has
been flipped. As we are assuming that the receiver has no side information about the transmitted
codeword, no decoder can know what the transmitted codeword was.
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