Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 20: Application: Secret Sharing October 12,2007

Lecturer: Atri Rudra

Scribe: Kanke Gao

In the last lecture, we introduced the concept of secret sharing. Here we restate the formal definition of an (ℓ, m) -secret sharing scheme, where $m > \ell$.

Inputs are secret $s \in \mathbb{D}$, for some domain \mathbb{D} and players P_1, P_2, \ldots, P_n and outputs are shares s_i for each player $P_i(1 \le i \le n)$, such that

- (A) For every $S \subseteq [n]$, such that $|S| \ge m$, s can be computed from $\{s_i\}_{i \in S}$.
- (B) For every $S \subseteq [n]$, such that $|S| \leq \ell$, s can not be computed from $\{s_i\}_{i \in S}$.

1 Shamir's secret sharing scheme

In the previous lecture, we saw a fairly simple secret sharing scheme with $\ell = n - 1$. In today's lecture we will consider some effective schemes. First, we will study Shamir's $(\ell, \ell + 1)$ -secret sharing scheme [1].

Shamir's $(\ell, \ell+1)$ -secret sharing scheme

Consider $\mathbb{D} = \mathbb{F}_q$, where $q \ge n$

Step 1) Pick a random polynomial $P(x) \in \mathbb{F}_q(x)$ of degree $\leq \ell, 1 \leq \ell \leq n-1$, such that P(0) = s.

Step 2) Choose distinct $x_1, x_2, \ldots, x_n \in \mathbb{F}_q$ and set $s_i = (P(x_i), x_i)$.

We now verify that Shamir's $(\ell, \ell + 1)$ -secret sharing scheme satisfies two required conditions of secret sharing schemes.

- Property (A): Let S ⊆ [n], such that |S| ≥ ℓ+1. At the output, we have shares {(P(x_i), x_i)}_{i∈S}, then we can recover P(x) by polynomial interpolation as degree of P is at most of ℓ. Given P(x), computing s = P(0) is easy.
- Property (B): Let S ⊆ [n], such that |S| ≤ l. At the output, we have shares {(P(x_i), x_i)}_{i∈S}. Consider coefficients of P(x) as variables. Totally, we have l + 1 coefficients and ≤ l values of P(x). For every fixed value of P(0), by polynomial interpolation one can obtain a different polynomial P(x). So every value of s is equally likely, as desired.

Shamir's scheme seems to crucially use properties of Reed-Solomon codes. Next, we will see a generalization of Shamir's scheme to linear codes that satisfy certain properties.

2 A generic secret sharing scheme

(ℓ, m) -secret sharing scheme

Consider $\mathbb{D} = \mathbb{F}_q$, where $q \ge n$, and the parameters satisfy $l \le d^{\perp}$, $m \ge n - d + 2$ for some $d, d^{\perp} \ge 1$. Let C be an $[n + 1, k, d]_q$ code and C^{\perp} be $[n + 1, n + 1 - k, d^{\perp}]_q$ code.

Step 1) Pick a random codeword $(c_0, c_1, \ldots, c_n) \in C$ such that $c_0 = s$.

Step 2) Set $s_i = c_i$ for $1 \le i \le n$.

For step 1 to be valid, for starters for every $\alpha \in \mathbb{F}_q$, there needs to exist a codeword $(\alpha, c_2, \ldots, c_n) \in C$. For any linear code C, there exists a codeword \mathbf{c} with $c_0 \neq 0$, which is equivalent to the condition that first column of generator matrix for C is not the all 0's vector¹. By linearity, for all $\alpha \in \mathbb{F}_q$, $\alpha \mathbf{c} \in C$. So the first symbols in the vectors in $\{\alpha \mathbf{c}\}_{\alpha \in \mathbb{F}_q}$ is \mathbb{F}_q .

In Shamir's scheme, the code C, which is $RS[n + 1, \ell + 1]_q$, has distance $d = n - \ell + 1$. So we have $m \ge n - (n - \ell + 1) + 2 = \ell + 1$. Further, it is known that

Proposition 2.1. $RS[n,k]^{\perp} = RS[n,n-k]$

The proof is left as an exercise. One way to prove this result is by using hint in question 6(a) of homework.

By Proposition 2.1, $RS[n + 1, \ell + 1]_q^{\perp} = RS[n + 1, n - \ell]_q$ and has distance $d^{\perp} = \ell$, as desired. We now check whether (ℓ, m) -secret sharing scheme above satisfies two conditions of secret sharing schemes.

- Property (A): Given m ≥ n − d + 2 symbols of a codeword are known, then n + 1 − (n − d + 2) = d − 1 symbols of the codeword are unknown. Declare these symbols as erasures, then there are ≤ d − 1 erasures. As C has distance d, we can uniquely recover the corresponding codeword (c₀, c₁,..., c_n) and in particular the secret c₀.
- Property (B): Follows from the claim below.

Claim 2.2. Given $\leq d^{\perp} - 2$ symbols of a codeword $(c_0, c_1, \ldots, c_n) \in C$ (other than c_0), all values of c_0 are possible.

Proof. (Sketch) Consider the known linear constraints on the c_i 's. The only known constraints are of the form $\sum_{i=0}^{n} x_i c_i = 0$ for every $(x_0, x_1, \ldots, x_n) \in C^{\perp}$. In order to recover c_0 , we need a constraint such that $x_0 \neq 0$ and $x_i = 0$, for every $i \notin S$. For sake of contradiction, there exists a dual codeword such that $x_0 \neq 0$ and $x_i = 0$, for every $i \notin S$. The weight of the dual codeword is $\leq d^{\perp} - 2 + 1 = d^{\perp} - 1$, which is a contradiction as C^{\perp} has distance d^{\perp} . Finally all values of c_0 are

¹We will assume this to be the case. Otherwise, we can drop the first symbol and not change any parameter of the code C other than decreasing the block length by one

possible as in the generator matrix of C, any $\leq d^{\perp} - 1$ columns are independent. This is because for any $C' = [n', k', d']_q$ code, d' is the smallest number of independent columns in parity check matrix of C'.

References

[1] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.