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Recall the question we raised earlier. Is there an explicit codes with R > 0 and δ > 0 that have
efficient unique decoding up to δ

2
for (q = 2)? For RS codes we have optimal trade off between R

and δ and efficient decoding algorithm exists. However, RS codes have the unfortunate property
that q must be large and hence, we are interested in the above question for small alphabet.

1 Reed-Muller Codes
We now extend the definition of Reed-Solomon codes, to multivariate polynomials with v number
of variables. These codes were termed Reed-Muller Codes after D. E. Muller [1] who discovered
the codes and I. S. Reed who gave a decoding procedure [2]. The codes that are presented here are
generalized to a range of parameters that were not covered in original work which mostly had fo-
cused on codes over F2. The way Reed-Muller codes are described here, they will be strict general-
ization of Reed-Solomon codes, although Reed-Solomon was discovered much later! Reed-Muller
codes can have smaller q unlike Reed-Solomon, in fact there exist efficient decoding algorithms
up to δ

2
and q = 2. The trade off between R and δ however is not that satisfactory as Reed-Muller

codes can not have R > 0, δ > 0. Reed-Muller codes have found many uses in complexity theory
and codeword testing.

Definition 1.1. A code (family) is called asymptotically good if its rate satisfies R > 0 and relative
distance satisfies δ > 0.

Recall that Reed-Solomon codes were defined using univariate polynomials. Now we define
Reed-Muller Codes using multivariate polynomials.

Definition 1.2 (Reed-Muller code). Let Fq[x1, x2, ..., xv] denote the Fv
q-space of multivariate poly-

nomials where all the coefficients are from Fq. We define an encoding function for Reed-Muller
code as RMq(t, v) as follows. A message symbol m with coefficients 〈mi1,i2,...,iv〉 ∈ Fq is mapped
to a v-variate polynomial Fq[x1, x2, ..., xv] of degree ≤ t over Fv

q as follows.

m 7→ pm(x1, x2, ..., xv),

where

pm(x1, x2, ..., xv) =
∑

i1,i2,...,iv∈Z≥0

i1+i2+...+iv≤t

mi1,i2,...,iv

v∏
j=1

x
ij
j (1)
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with m = 〈mi1,i2,...,iv〉(i1,i2,...,iv)
i1+i2+...+iv≤t

, 0 ≤ ij ≤ q − 1, and t ≤ v(q − 1). The encoding of m is the

evaluation of pm(x) at all the vectors in Fv
q:

RM(m) = 〈pm(α1, α2, ..., αv)〉(α1,α2,...,αv)∈Fv
q

Remark 1.3. It is easy to check that RMq(t, 1) codes are equivalent to [q, t + 1]q Reed-Solomon
codes.

It is obvious that the block length of the RMq(t, v) code is n = qv. We will first look at the case
where t < q which is useful in applications of complexity theory. The message length k equals the
number of v-long sequences of integers that sums to at most t and it turns out to be:

k = |{(i1, i2, ..., iv)|i1 + i2 + ... + iv ≤ t}|

=

(
v + t

v

)
when t ≤ q−1. Note that when t ≥ q it gets complicated because of the identity xq = x , ∀x ∈ Fq.

Remark 1.4. The way the mapping is defined in (1), RMq(t, v) codes are linear codes. The proof
is similar to the one we used to prove that RS codes are linear and is left as an exercise.

Proposition 1.5. The distance of RMq(t, v) code is ≥
(
1− t

q

)
qv. Hence for t < q, RMq(t, v) is

an
[
qv,

(
v+t
v

)
,
(
1− t

q

)
qv

]
q

code.

Let us look at some instantiations of the parameters.

1. When t = 1, RMq(t, v) is equivalent to RS for (q = n).

2. When v = t = q
2

the code length becomes n = qv =
√

qq. We can show that q =

Θ
(

log n
log log n

)
. For this set of parameters we show the asymptotic behavior of the rate of

the code.

k =

(
v + t

v

)
=

(
q
q
2

)
≤ (2e)

q
2

= 2Θ(q) (2)

From (2) note that R → 0 as n →∞ for δ = 1
2
.

The proof of Proposition 1.5 follows immediately from the following lemma as RMq(t, v) is
linear.
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Lemma 1.6 (Schwartz-Zippel). Any non-zero v-variate polynomial in Fq[x1, x2, ..., xv] of degree
almost t has ≤ tqv−1 roots.

Proof. We will prove the proposition by induction on the number of variables. For v = 1 it states
the familiar result that a non-zero univariate polynomial has at most as many roots as its degree.
Now assume that the induction hypothesis is true for the multivariate polynomial with up to v − 1
variables, for v > 1. Let P (x1, . . . , xv) be a degree t polynomial. Decompose the polynomial as
follows:

P (x1, x2, ..., xv) =

t1∑
i=0

Ri(x2, ..., xv)x
i
1 (3)

W.l.o.g. we can assume that t1 ≥ 1 (as otherwise we have v− 1 variables and by induction we will
have ≤ tqv−2 < tqv−1 roots) and t1 may be strictly smaller than t. We consider the following two
cases for a possible root (α1, . . . , αv):

• Case 1: Rt1(α2, ..., αv) = 0 where (α2, ..., αv) ∈ Fv−1
q . The number of such roots of Rt1 by

the induction hypothesis is:

|{(α2, ..., αv) | Rt(α2, ..., αv) = 0}| ≤ deg(Rt1)q
v−2

≤ (t− t1)q
v−2.

Thus, the number of roots of P (x1, α2..., αv) given Rt1(α2, ..., αv) = 0 is

|{(α1, α2, . . . , αv) | Rt1(α2, ..., αv) = 0}| ≤ (t− t1)q
v−2q

= (t− t1)q
v−1,

where the inequality follows from the fact that any tuple (α2, . . . , αv) can be extended to at
most q vectors in Fn

q .

• Case 2: Rt1(α2, ..., αv) 6= 0. Fix (α?
2, . . . , α

?
v) such that Rt1(α

?
2, . . . , α

?
v) 6= 0. Since

P (x1, α
?
2, ..., α

?
v) is a univariate polynomial of degree ≤ t1, by induction:

|{(α1, α
?
2, . . . , α

?
v) | P (α1, α

?
2, . . . , α

?
v) = 0}| ≤ t1.

Then the total number of roots (α1, α2, ..., αv) such that Rt1(α2, ..., αv) 6= 0 is

|{(α1, α2, . . . , αv) | P (α1, α2, . . . , αv) = 0 ∧Rt1(α2, ..., αv) 6= 0}| ≤ t1q
v−1,

where the inequality follows from the fact that there can be at most qv−1 distinct tuples
(α?

2, . . . , α
?
v).
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Now combining two cases we get the total number of roots as follows:

|{(α1, α2, . . . , αv) | P (α1, α2, . . . , αv) = 0}|
= |{(α1, α2, . . . , αv) | P (α1, . . . , αv) = 0 ∧Rt1(α2, ..., αv) = 0}|

+ |{(α1, α2, . . . , αv) | P (α1, α2, . . . , αv) = 0 ∧Rt1(α2, ..., αv) 6= 0}|
≤ |{(α1, α2, . . . , αv) | Rt1(α2, ..., αv) = 0}|

+ |{(α1, α2, . . . , αv) | P (α1, α2, . . . , αv) = 0 ∧Rt1(α2, ..., αv) 6= 0}|
≤ (t− t1)q

v−1 + t1q
v−1

= tqv−1,

as desired.

From the Schwartz-Zippel lemma, the distance of RMq(t, v) is at least the total number of non-
zero values of P (x1, x2, ..., xv) which is equal to the number of possible (x1, x2, . . . , xv) minus the
total number of roots of P (x1, x2, ..., xv). Therefore,

d ≥
(

1− t

q

)
qv

and it is a tight bound. So RMq(t, v) is an[
qv,

(
v + t

v

)
,

(
1− t

q

)
qv

]
q

code. Hence, this proves the Proposition 1.5.
If we take Reed-Muller code with parameters q = 2 and t > 2 we get RM2(t, v) code. The

polynomial P defined by (3) of degree ≤ t turns out to be,

P (x1, x2, . . . , xv) =
∑
S⊆[v]
|S|≤t

ms

∏
i∈S

xi,

That is P is a multi linear polynomial where ms ∈ F2 and m = 〈ms〉S⊆[v]
|S|≤t

. We have the following

result:

Claim 1.7. RM2(t, v) is a
[
2v,

∑t
i=0

(
v
i

)
, 2m−v

]
2

This result will be proved in the next lecture.
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