Error Correcting Codes: Combinatorics, Algorithms and Applications
 (Fall 2007)

 Lecture 23: Proof of a Key Lemma
 October 19, 2007

 Lecturer: Atri Rudra
 Scribe: Nathan Russell

In the last lecture, we studied the Reed-Muller code, $RM_2(t, v)$ and saw the "majority logic decoder" for such codes, In today's lecture, we will start off with a formal statement of the algorithm and then prove its correctness.

1 Majority Logic Decoding

Below is the formal statement of the majority logic decoding algorithm.

INPUT: $\mathbf{y} = \langle y_{\mathbf{a}} \rangle_{\mathbf{a} \in \mathbb{F}_{2}^{v}}$ such that there exists $P(x_{1}, \ldots, x_{v})$ of degree at most t with $\Delta(\mathbf{y}, \langle P((\mathbf{a}) \rangle_{\mathbf{a} \in \mathbb{F}_{2}^{v}}))$ $< 2^{r-t-1}$. OUTPUT: Compute $P(x_{1}, \ldots, x_{r})$

- 1. $P \equiv 0, r \leftarrow t$
- 2. (a) For all $S \subseteq [v]$, such that |S| = t, set C_S to be the majority over $\mathbf{b} \in \mathbb{F}_2^{v-t}$ of $\sum_{\mathbf{a} \in \mathbb{F}_2^v, \mathbf{a}_{\overline{S}} = \mathbf{b}} y_{\mathbf{a}}$. Set $P \leftarrow P + C_S \prod_{j \in S} x_j$
 - (b) For all $\mathbf{a} \in \mathbb{F}_2^v, y_{\mathbf{a}} \leftarrow y_{\mathbf{a}} \sum_{S \in [v], |S|=t} C_S \prod_{j \in S} a_j$.
- 3. $r \leftarrow r 1$
- 4. If r < 0 output P, else go to step 2.

Note that this is an $O(n^3t)$ algorithm, where $n = 2^v$. This is true because the number of iterations in step 2 (a) is at most $\binom{v}{t} \leq n$, and computing the majority in that step takes time $O(n^2)$. Finally, step 2 is repeated at most t times.

2 Correctness of the algorithm

We need one further result to prove the correctness of the majority logic decoder, namely the lemma from the last lecture.

Lemma 2.1. For all $t \ge 0$ and $S \subseteq [v]$ such that |S| = t, any v-variate polynomial P of degree at most t, for every $\mathbf{b} \in \mathbb{F}_2^{v-t}$, has $\sum_{\mathbf{a} \in \mathbb{F}_2^v, \mathbf{a}_{\overline{s}} = \mathbf{b}} P(\mathbf{a}) = C_S$.

At this point, we need a new notation. Given a subset S of [v], define

$$R_S(x_1, x_2, \dots x_v) \triangleq \prod_{j \in S} x_j.$$

We will need the following two observations.

Observation 2.2. For all $S \in [v]$ and $T \subset S$, for all $\mathbf{b} \in \mathbb{F}_2^{v-|S|}$, $\sum_{\mathbf{a} \in \mathbb{F}_2^v, \mathbf{a}_{\bar{S}} = \mathbf{b}} R_T(\mathbf{a}) = 0$. **Observation 2.3.** For all $S \subseteq [v]$ and $\mathbf{b} \in \mathbb{F}_2^{v-|S|}$, $\sum_{\mathbf{a} \in \mathbb{F}_2^v, \mathbf{a}_{\bar{S}} = \mathbf{b}} R_S(\mathbf{a}) = 1$.

Subject to the proof of these two observations (which we will do later), we are now ready to prove Lemma 2.1.

Proof of Lemma 2.1 Let $P_{\mathbf{b}}$ denote the polynomial obtained from P by substituting the variables $\{x_i | i \notin S\}$ according to b. $P_{\mathbf{b}}$ now only has monomials of the form $R_Y(x_1, x_2, \ldots, x_v)$ for $Y \subseteq S$. In other words,

$$P_{\mathbf{b}}(x_1, \dots, x_v) = C_S R_S(x_1, \dots, x_v) + \sum_{T \in S} C'_T R_T(x_1, \dots, x_v).$$

The definition of $P_{\mathbf{b}}$ and the above relation implies the following:

$$\sum_{\mathbf{a}\in\mathbb{F}_{2}^{v},\mathbf{a}_{\bar{S}}=\mathbf{b}} P(\mathbf{a}) = \sum_{\mathbf{a}\in\mathbb{F}_{2}^{v},\mathbf{a}_{\bar{S}}=\mathbf{b}} P_{\mathbf{b}}(\mathbf{a})$$
$$= C_{S} \sum_{\mathbf{a}\in\mathbb{F}_{2}^{v},\mathbf{a}_{\bar{S}}=\mathbf{b}} R_{S}(\mathbf{a}) + \sum_{T\subset S} C_{T}' \sum_{\mathbf{a}\in\mathbb{F}_{2}^{v},\mathbf{a}_{\bar{S}}=\mathbf{b}} R_{T}(\mathbf{a})$$
$$= C_{S},$$

where the last equality follows from Observations 2.3 and 2.2.

This proves Lemma 2.1. We still must prove the two observations, first, Observation 2.2: **Proof of Observation 2.2** Consider the sum $\sum_{\mathbf{a}\in\mathbb{F}_2^v,\mathbf{a}_{\bar{S}}=\mathbf{b}} R_T(\mathbf{a})$. Fix some $i \in S \setminus T$. We can divide this into the sum of two parts: $\sum_{\mathbf{a}\in\mathbb{F}_2^v,\mathbf{a}_{\bar{S}}=\mathbf{b},a_i=0} R_T(\mathbf{a}) + \sum_{\mathbf{a}\in\mathbb{F}_2^v,\mathbf{a}_{\bar{S}}=\mathbf{b},a_i=1} R_T(\mathbf{a})$. Since $R_T(x)$ does not depend on x_i , the two parts are equal, and the sum is zero since it is computed over \mathbb{F}_2 .

We now move to the proof of Observation 2.3.

Proof of Observation 2.3 Note that $R_S(\mathbf{a}) = 1$ if and only if for all $i \in S$, $a_i = 1$. Notice that this is true for exactly one value in $\{\mathbf{a} \in \mathbb{F}_2^v | \mathbf{a}_{\bar{S}} = \mathbf{b}\}$.

3 Construction of explicit binary asymptotically good codes

We now return to the question of explicit binary codes with both R and δ greater than zero. Recall that the Reed-Muller codes give us $R = \frac{1}{2}$ and $\delta = \frac{1}{\sqrt{n}}$, which falls short of this goal. The Reed-Solomon code, as a binary code, comes closer - it gives us the same rate, and $\delta = \frac{1}{\log n}$, as we discuss next.

Consider the Reed-Solomon over \mathbb{F}_{2^s} for some large enough s. It is possible to get a code with (e.g.) a rate of $\frac{1}{2}$, and have an $[n, \frac{n}{2}, \frac{n}{2} + 1]_{2^s}$ code. We now consider a Reed-Solomon codeword, where every symbol in \mathbb{F}_{2^s} is represented by an s-bit vector. Now, the "obvious" binary code created by viewing symbols from \mathbb{F}_{2^s} as bit vectors as above is an $[ns, \frac{ns}{2}, \frac{n}{2} + 1]_2$ code. Note that the distance of this code is only $\Theta(\frac{N}{\log N})$, where N = ns is the block length of the final binary code. Recall that $n = 2^s$ and so $N = n \log n$.

The reason for the poor distance is that the bit vectors corresponding to two different symbols in \mathbb{F}_{2^s} may only differ by one bit. Thus, d positions which have different \mathbb{F}_{2^s} symbols might result in a distance of only d as bit vectors.

To fix this problem, we can consider applying a function to the bit-vectors to increase the distance between those bit-vectors that differ in smaller numbers of bits. Note that such a function is simply a code, and Forney introduced this idea of "concatenating" in 1966.

More formally, consider a conversion function that maps $\mathbb{F}_{2^s} \to (\mathbb{F}_2)^{s'}$ in such a fashion that, even if $\Delta(\mathbf{x}, \mathbf{y}) = 1$, $\Delta(f(\mathbf{x}), f(\mathbf{y})) \ge d'$. If we find such a function, we can construct a code with $R > 0, \delta > 0$ as long as the "inner distance", d', is $\Omega(s')$. In the next lecture, we will formally define code concatenation and consider the problem of finding good inner codes.