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In the last lecture, we studied the Reed-Muller code,RM2(t, v) and saw the “majority logic de-
coder” for such codes, In today’s lecture, we will start off with a formal statement of the algorithm
and then prove its correctness.

1 Majority Logic Decoding

Below is the formal statement of the majority logic decodingalgorithm.

INPUT: y = 〈ya〉a∈F
v
2

such that there existsP (x1, . . . , xv) of degree at mostt with ∆(y, 〈P ((a)〉a∈F
v
2
))

< 2r−t−1 .
OUTPUT: ComputeP (x1, . . . , xr)

1. P ≡ 0, r ← t

2. (a) For allS ⊆ [v], such that|S| = t, set CS to be the majority overb ∈ F
v−t
2 of

∑

a∈F
v
2
,a

S̄
=b

ya. SetP ← P + CS

∏

j∈S xj

(b) For alla ∈ F
v
2, ya ← ya −

∑

S∈[v],|S|=t CS

∏

j∈S aj .

3. r ← r − 1

4. If r < 0 outputP , else go to step 2.

Note that this is anO(n3t) algorithm, wheren = 2v. This is true because the number of iterations
in step 2 (a) is at most

(

v

t

)

≤ n, and computing the majority in that step takes timeO(n2). Finally,
step 2 is repeated at mostt times.

2 Correctness of the algorithm

We need one further result to prove the correctness of the majority logic decoder, namely the
lemma from the last lecture.

Lemma 2.1. For all t ≥ 0 and S ⊆ [v] such that |S| = t, any v-variate polynomial P of degree at
most t, for every b ∈ F

v−t
2 , has

∑

a∈F
v
2
,a

S̄
=b

P (a) = CS.
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At this point, we need a new notation. Given a subsetS of [v], define

RS(x1, x2, . . . xv) ,
∏

j∈S

xj .

We will need the following two observations.

Observation 2.2. For all S ∈ [v] and T ⊂ S, for all b ∈ F
v−|S|
2 ,

∑

a∈F
v
2
,a

S̄
=b

RT (a) = 0.

Observation 2.3. For all S ⊆ [v] and b ∈ F
v−|S|
2 ,

∑

a∈F
v
2
,a

S̄
=b

RS(a) = 1.

Subject to the proof of these two observations (which we willdo later), we are now ready to
prove Lemma 2.1.
Proof of Lemma 2.1 Let Pb denote the polynomial obtained fromP by substituting the variables
{xi|i /∈ S} according tob. Pb now only has monomials of the formRY (x1, x2, . . . , xv) for Y ⊆ S.
In other words,

Pb(x1, . . . , xv) = CSRS(x1, . . . , xv) +
∑

T∈S

C ′
T RT (x1, . . . , xv).

The definition ofPb and the above relation implies the following:
∑

a∈F
v
2
,a

S̄
=b

P (a) =
∑

a∈F
v
2
,a

S̄
=b

Pb(a)

= CS

∑

a∈F
v
2
,a

S̄
=b

RS(a) +
∑

T⊂S

C ′
T

∑

a∈F
v
2
,a

S̄
=b

RT (a)

= CS,

where the last equality follows from Observations 2.3 and 2.2. 2

This proves Lemma 2.1. We still must prove the two observations, first, Observation 2.2:
Proof of Observation 2.2 Consider the sum

∑

a∈F
v
2
,a

S̄
=b

RT (a). Fix somei ∈ S \ T . We can
divide this into the sum of two parts:

∑

a∈Fv
2
,a

S̄
=b,ai=0 RT (a) +

∑

a∈Fv
2
,a

S̄
=b,ai=1 RT (a). Since

RT (x) does not depend onxi, the two parts are equal, and the sum is zero since it is computed over
F2. 2

We now move to the proof of Observation 2.3.
Proof of Observation 2.3 Note thatRS(a) = 1 if and only if for all i ∈ S, ai = 1. Notice that this
is true for exactly one value in{a ∈ F

v
2|aS̄ = b}. 2

3 Construction of explicit binary asymptotically good codes

We now return to the question of explicit binary codes with both R andδ greater than zero. Recall
that the Reed-Muller codes give usR = 1

2
andδ = 1√

n
, which falls short of this goal. The Reed-

Solomon code, as a binary code, comes closer - it gives us the same rate, andδ = 1
log n

, as we
discuss next.
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Consider the Reed-Solomon overF2s for some large enoughs. It is possible to get a code with
(e.g.) a rate of1

2
, and have an[n, n

2
, n

2
+ 1]2s code. We now consider a Reed-Solomon codeword,

where every symbol inF2s is represented by ans-bit vector. Now, the “obvious” binary code
created by viewing symbols fromF2s as bit vectors as above is an[ns, ns

2
, n

2
+ 1]2 code. Note that

the distance of this code is onlyΘ( N
log N

), whereN = ns is the block length of the final binary
code. Recall thatn = 2s and soN = n log n.

The reason for the poor distance is that the bit vectors corresponding to two different symbols
in F2s may only differ by one bit. Thus,d positions which have differentF2s symbols might result
in a distance of onlyd as bit vectors.

To fix this problem, we can consider applying a function to thebit-vectors to increase the
distance between those bit-vectors that differ in smaller numbers of bits. Note that such a function
is simply a code, and Forney introduced this idea of “concatenating” in 1966.

More formally, consider a conversion function that mapsF2s → (F2)
s′ in such a fashion that,

even if∆(x,y) = 1, ∆(f(x), f(y)) ≥ d′. If we find such a function, we can construct a code with
R > 0, δ > 0 as long as the “inner distance”,d′, is Ω(s′). In the next lecture, we will formally
define code concatenation and consider the problem of findinggood inner codes.
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