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In the last lecture, we studied the Reed-Muller cal®/, (¢, v) and saw the “majority logic de-
coder” for such codes, In today’s lecture, we will start offfwa formal statement of the algorithm
and then prove its correctness.

1 Majority Logic Decoding

Below is the formal statement of the majority logic decodahgorithm.

INPUT. ¥ = (ya)acry SUCh that there exist3(x1, . . ., z,) of degree at mostwith A(y, (P((a))acry))
<2ttt
OuTpPUT: ComputeP(xy,...,z,)

1. P=0,r«t

2. (a) For allS C [v], such that|S| = t, setCy to be the majority oveb € F,~" of
Zang,agzb Ya. SELP «— P+ Cg Hjes T,

(b) Foralla € 75, ya < ya — > gepuysimt Cs [Ljes @

3.re—r—1

4. If r < 0 outputP, else go to step 2.

Note that this is aiD(n3t) algorithm, wheren = 2°. This is true because the number of iterations
instep 2 (a) is at mos(t;’) < n, and computing the majority in that step takes tithe:?). Finally,
step 2 is repeated at masimes.

2 Correctnessof thealgorithm

We need one further result to prove the correctness of thenthajogic decoder, namely the
lemma from the last lecture.

Lemma2.l. Forallt > 0and S C [v] suchthat |S| = ¢, any v-variate polynomial P of degree at
most ¢, for every b € Fy ™", has 3=,z o i, P(a) = Cs.



At this point, we need a new notation. Given a sulssef [v], define
RS(.Tl, T,y . .. .Z’v) £ H.I‘j.
jes
We will need the following two observations.

Observation 2.2. Forall S € [v] and T C S, forall b € F; ™, 3", . | ) Rr(a) = 0.

Observation 2.3. For all S C [v] andb € F; ™", 3. .\, Rs(a) = 1.

Subject to the proof of these two observations (which we dalllater), we are now ready to
prove Lemm&Zl1.
Proof of LemmalZd Let P, denote the polynomial obtained froMby substituting the variables
{z;|i ¢ S} according tdb. P, now only has monomials of the forfy (21, xs, ..., z,) forY C S.
In other words,

Py(z1,...,2y) = CsRg(x1,...,2,) + ZC}RT@M Cy Ty).

TeS

The definition of?, and the above relation implies the following:

Y Pla= ) Pl

aclFy,ag=b aclFy,ag=b
o Y R@YN G Y A
acFy,ag=b TCS aclFy,ag=b
= Cg,
where the last equality follows from Observatigns 2.3 @i 2. O

This proves LemmB2. 1. We still must prove the two observatifirst, Observation2.2:
Proof of Observation [Z2 Consider the SU”Eang,agzb Rr(a). Fix some; € S\ T. We can
divide this into the sum of two parts . cxw o 1, 4,—0 (@) + D acry azob a1 fr(a). Since
Rr(x) does not depend or, the two parts are equal, and the sum is zero since it is cadmyter
Fs. O

We now move to the proof of Observatibnl2.3.

Proof of ObservationZ3 Note thatRs(a) = 1 if and only if for alli € S, a; = 1. Notice that this
is true for exactly one value ifa € F|ag = b}. 0

3 Construction of explicit binary asymptotically good codes

We now return to the question of explicit binary codes witthbB andé greater than zero. Recall
that the Reed-Muller codes give lis= % ando = ﬁ which falls short of this goal. The Reed-
Solomon code, as a binary code, comes closer - it gives usathe sate, and = @ as we
discuss next.



Consider the Reed-Solomon ovéx: for some large enough It is possible to get a code with
(e.g.) arate og, and have afn, 3, 5 + 1],s code. We now consider a Reed-Solomon codeword,
where every symbol iy is represented by agmbit vector. Now, the “obvious” binary code
created by viewing symbols frofi,. as bit vectors as above is ams, %5*, § + 1], code. Note that
the distance of this code is on@(%), where N = ns is the block length of the final binary
code. Recall that = 2° and soN = nlogn.

The reason for the poor distance is that the bit vectors spaeding to two different symbols
in Fos may only differ by one bit. Thus] positions which have differerit,: symbols might result
in a distance of onlyl as bit vectors.

To fix this problem, we can consider applying a function to kievectors to increase the
distance between those bit-vectors that differ in smallenbers of bits. Note that such a function
is simply a code, and Forney introduced this idea of “contatiag” in 1966.

More formally, consider a conversion function that mags — (IF,)* in such a fashion that,
evenifA(x,y) =1, A(f(x), f(y)) > d'. If we find such a function, we can construct a code with
R > 0,6 > 0 as long as the “inner distance?,, is {2(s’). In the next lecture, we will formally
define code concatenation and consider the problem of firghiog inner codes.
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