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Recall the following question we have encountered before:

Question 0.1. Is there an explicit asymptotically good code? (that is, rate R > 0 and relative
distance δ > 0 for small q).

Here, explicit means:

(i) polynomial time construction (of some representation of the code),

(ii) “super” explicit (like description of RS code).

We will answer the question at least in the sense of explicit codes of (i) in this lecture.

1 Code Concatenation
Code concatenation was first proposed by Forney[1]. For q ≥ 2, k ≥ 1 and Q = qk, consider two
codes which we call outer code and inner code:

Cout : [Q]K → [Q]N ,

Cin : [q]k → [q]n.

Note that the alphabet size of Cout exactly matches |Cin|. Then given m = (m1, . . . , mK) ∈ [Q]K ,
we have the code Cout ◦ Cin : [q]kK → [q]nN defined as

Cout ◦ Cin(m) = (Cin(Cout(m)1), . . . , Cin(Cout(m)N)),

where
Cout(m) = 〈Cout(m)1, . . . ,m)N〉.

This construction is also illustrated in Figure 1. We now look at some properties of a concatenated
codes.

Theorem 1.1. Given Cout as an (N, K, D)qk code and Cin as an (n, k, d)q code, Cout ◦ Cin is an
(nN, kK, dD)q code.
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Figure 1: Concatenated code Cout ◦ Cin.

Proof. The claims on the block length, dimension and alphabet of Cout ◦ Cin follow from the
definition. Next we show that the distance is at least dD. Consider arbitrary m1 6= m2 ∈ [Q]K .
Then,

∆(Cout(m
1), Cout(m

2)) ≥ D. (1)

Thus for each position 1 ≤ i ≤ N that contributes to the distance above, we have

∆(Cin(Cout(m
1)i), Cout(m

2)i) ≥ d, (2)

as Cin has distance d. Since there are at least D such positions (from (1)), (2) implies

∆(Cin(Cout(m
1)), Cout(m

2)) ≥ dD.

The proof is complete as the choices of m1 and m2 were arbitrary.

Remark 1.2. If Cin and Cout are linear codes, then so is Cout ◦ Cin, which can be proved for
example, by defining a generator matrix for Cout ◦ Cin in terms of the generator matrices of Cin

and Cout. The proof is left as an exercise.

Suppose Cout meets the Singleton bound with rate of R, i.e. Cout has relative distance δ >
1 − R. Note that we have a chicken and egg problem here. In order for Cout ◦ Cin to be an
asymptotically good code, Cin needs to have rate r > 0 and relative distance δin > 0 (i.e. Cin also
needs to be an asymptotically good code). However the saving grace will be that k can be much
smaller than the block length of the concatenated code.

Suppose Cin meets the GV bound with rate of r and thus with relative distance δin ≥ H−1
q (1−

r)− ε, ε > 0, then Cout ◦ Cin has rate of rR and δ = (1− R)(H−1
q (1− r)− ε). Expressing R as

a function of δ, r, we get the following:

R = 1− δ

H−1(1− r)− ε
.

2



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

δ 
 -

--
>

R  --->

Gilbert-Varshamov Bound
Zyablov bound

Figure 2: The Zyablov bound. For comparison, the GV bound is also plotted.

Then optimizing over the choice of r, we get that rate of the concatenated code satisfies

R ≥ max
0<r<1−Hq(δ+ε)

r

(
1− δ

H−1
q (1− r)− ε

)
.

This lower bound is the so called Zyablov bound (the bound of r < 1−Hq(δ + ε) is necessary to
ensure that R > 0). See Figure 2 for a plot of this bound.

Note that the Zyablov bound implies that for every δ > 0, there exists a (concatenated) code
with rate R > 0. Thus, a natural question to ask is the following:

Question 1.1. Can we construct such a code in polynomial time?

We will focus on linear codes in seeking an answer to the question above because linear codes
have polynomial size representation. Let Cout be an [N, K]Q Reed-Solomon code where N = Q−1
(evaluation points being F∗Q with Q = qk, then k = Θ(log N). However we still need an efficient
construction of an inner code that lies on the GV bound. There are two options:

• Perform an exhaustive search among all generator matrices for one satisfying the required
property for Cin. One can do this because the Varshamov bound states that there exists a
linear code which lies on the GV bound. This will take qO(kn) time. Using k = rn (or
n = O(k)), we get qO(kn) = qO(k2) = NO(log N), which is upper bounded by (nN)O(log(nN)),
a quasi-polynomial time bound.

• The second option is to construct Cin in qO(n) time and thus use (nN)O(1) time overall. This
can be achieved by using the method of conditional expectation on the proof that random
linear code lies on the bound with high probability.

Thus, we can construct a code that achieves the Zyablov bound in polynomial time. In particular,
we can construct explicit asymptotically good code (over some alphabets) in polynomial time.
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