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In the last lecture, we introduced code concatenation, where we compose an outer code Cout with
an inner code Cin. We derived the Zyablov bound by picking Cout on the Singleton bound and
Cin on the GV bound. We also presented a polynomial time construction of a code that achieves
the Zyablov bound (and hence, an asymptotically good code). A somewhat unsatisfactory aspect
of this construction was the brute force search for a suitable inner code (which lead to the poly-
nomial construction time). In today’s lecture, we will study a strongly explicit construction of an
asymptotically good code.

1 Strongly explicit construction
A polynomial time construction of an asymptotically good code was presented in the last lec-
ture. A natural followup question is if we can have a strongly explicit construction. Techni-
cally speaking, by strongly explicit construction, we mean a log space construction. However,
we will not formally define this notation. We will now consider the so called Justesen code [1].
Justesen code is concatenation code with different linear inner codes, which is composed of an
(N,K,D)qk outer code Cout and different (n, k, d)q inner codes Ci

in : 1 ≤ i ≤ N . Formally,
the concatenation of these codes, denoted by Cout ◦ (C1

in, . . . , C
N
in), is defined as follows. Given

a message m ∈ [qk]K , let the outer codeword be denoted by (c1, . . . , cN)
def
= Cout(m). Then

Cout ◦ (C1
in, . . . , C

N
in)(m) = (C1

in(c1), C
2
in(c2), . . . , C

n
in(cN)).

We will need the following result.

Theorem 1.1. Let ε > 0. There exists an ensemble of inner codesC1
in, C

2
in, . . . , C

N
in of rate 1

2
, where

N = qk − 1, such that for at least (1− ε)N values of i, Ci
in has relative distance ≥ H−1

q (1
2
− ε).

In fact, this ensemble is the following. For α ∈ F∗
qk , the inner code Cα

in : Fkq → F2k
q , is defined

as Cα
in(x) = (x, αx). This ensemble is due to Wozencraft and is called the Wozencraft ensemble.

It is easy to check that Cα
in for every α ∈ F∗

qk is linear.

2 Justesen code
For the Justesen code, the outer code Cout is Reed-Solomon code over Fqk evaluated over F∗

qk of
rate R, 0 < R < 1. The outer code Cout have relative distance δout = 1 − R and block length of
N = qk − 1. The set of inner codes is the Wozencraft ensemble {Cα

in}α∈F∗
qk

. So Justesen code is

the concatenated code C∗ def= Cout ◦ (C1
in, C

2
in, . . . , C

N
in) with the rate R

2
. The following proposition

estimates the distance of C∗.
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Proposition 2.1. Let ε > 0. C∗ has relative distance at least (1−R− ε)H−1
q (1

2
− ε)

Proof. Consider m1 6= m2 ∈ (Fqk)K . By the distance of outer codes |S| ≥ (1 − R)N , where
S = {i|Cout(m1)i 6= Cout(m

2)i}. Call the ith inner code “good”, if Ci
in has distance at least

d
def
= H−1

q (1
2
− ε) · 2k. Otherwise, the inner code is considered bad. Note that by Theorem 1.1,

there are at most εN bad inner codes. Let Sg be the set of all good inner codes in S, while Sb is
the set of all bad inner codes in S. Since Sb ≤ εN ,

|Sg| = |S| − |Sb| ≥ (1−R− ε)N. (1)

For each good i ∈ S
∆(Ci

in(Cout(m
1)i), C

i
in(Cout(m

2)i)) ≥ d. (2)

Finally, from (1) and (2), we obtain that the distance of C∗ is at least

(1−R− ε)Nd = (1−R− ε)H−1
q (

1

2
− ε)N · 2k,

as desired.

Since the Reed-Solomon codes as well as the Wozencraft ensemble are strongly explicit, the
above result implies the following:

Corollary 2.2. The concatenated code C∗ is an asymptotically good code and has a strongly
explicit construction.

Thus, we have now satisfactorily answered the question of whether explicit asymptotically
good (binary) codes exist modulo Theorem 1.1, which we prove next.

Proof of Theorem 1.1. Fix y = (y1,y2) ∈ F2k
q \ {0}. Note that this implies that y1 = 0 and

y2 = 0 are not possible. We claim that y ∈ Cα
in for at most one α ∈ F∗

2k . The proof is by a simple
case analysis.

• Case 1: y1 6= 0 and y2 6= 0, then y ∈ Cα
in, where α = y2

y1
.

• Case 2: y1 6= 0 and y2 = 0, then y /∈ Cα
in for every α ∈ F∗

2k(as αy1 6= 0).

• Case 3: y1 = 0 and y2 6= 0, then y /∈ Cα
in for every α ∈ F∗

2k(as αy1 = 0).

Now assume that wt(y) < H−1
q (1 − ε)n. Note that if y ∈ Cα

in, then Cα
in is “bad”(i.e. has

relative distance < H−1
q (1

2
− ε)). Since y ∈ Cα

in for at most one value of α, the total number of
bad codes is at most

|{y|wt(y) < H−1
q (

1

2
− ε) · 2k}| ≤ V olq(0, H

−1
q (

1

2
− ε) · 2k)

≤ qHq(H−1
q ( 1

2
−ε))·2k (3)
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= q( 1
2
−ε)·2k

=
qk

q2εk

< ε(qk − 1) (4)
= εN. (5)

In the above, (3) follows from our good old upper bound on the volume of a Hamming ball while
(4) is true for large enough k. Thus for at least (1 − ε)N values of α, Cα

in has relative distance at
least H−1

q (1
2
− ε), as desired. 2

Concatenating an outer code of distance D and an inner code of distance d, we can obtain
a code of distance at least ≥ Dd (Dd is called its design distance). For asymptotically good
codes, we have obtained polynomial time construction of such codes, as well as strongly explicit
construction of similar codes. Further, since these codes were linear, we also get polynomial time
encoding. However, the following natural question about decoding still remains unanswered.

Question 2.3. Can we decode concatenated codes up to half their design distance in polynomial
time?

We will study this question in the next lecture.
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