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In the last lecture, we discussed unique decoding of RS codes and briefly went through the
Berlekamp-Welch algorithm. In today’s lecture we will study Berlekamp-Welch algorithm in more
detail.

Recall that the [n, k, n−k+1]q Reed-Solomon code regards a message as a polynomial P (X) of
a degree at most k−1, and the encoding of a message m = (m0, . . . ,mk−1) is (P (α1), . . . , P (αn)).
Here, mi ∈ Fq, k ≤ n ≤ q, and P (X) =

∑k−1
i=0 miX

i. Now let us look at the decoding problem
of Reed-Solomon codes. Suppose we are given distinct values α1, . . . , αn where αi ∈ Fq with
received word y = (y1, . . . , yn) ∈ Fnq and parameters k and e < n−k+1

2
, where e is an upper bound

on the number of errors which occurred during transmission. Our goal is to find a polynomial
P (X) ∈ Fq[X] of degree at most k − 1, such that P (αi) 6= yi for at most e values of i ∈ [n]
(assuming such a P (X) exists). Although this problem is quite non-trivial one, a polynomial time
solution can be found for this problem. This solution dates back to 1960 when Peterson [2] came
up with a decoding algorithm for the more general BCH code that runs in time O(n3). Later
Berlekamp and Massey sped up this algorithm so that it runs in O(n2). There is an implementation
using Fast Fourier Transform that runs in time O(n log n). We will not discuss these faster algo-
rithms, but will study another algorithm due to Berlekamp and Welch. More precisely, we will use
the Gemmell-Sudan description of the Berlekamp-Welch algorithm[1].

1 Berlekamp-Welch Algorithm
We start by describing the Berlekamp-Welch algorithm.

Input: n ≥ k ≥ 1, 0 < e < n−k+1
2

and n pairs {(αi, yi)}ni=1 with αi distinct. Let y = (y1, . . . , yn).

Output: Polynomial P (X) of degree at most k − 1 or fail.

Step 1: Compute a non-zero polynomial E(X) of degree exactly e, and a polynomial Q(X) of
degree at most e+ k − 1 such that

yiE(αi) = Q(αi) 1 ≤ i ≤ n. (1)

If such polynomials do not exist output fail.

Step 2: IfE(X) does not divideQ(X) output fail else compute P (X) = Q(X)
E(X)

. If ∆(y, (P (αi))i) >

e then output fail else output P (X).
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Remark 1.1. Notice that computing E(X) a as hard as finding the solution polynomial P (X). If
one knew E(X), then one can use erasure decoding for RS codes to recover P (X). Also in some
cases, the polynomial Q(X) is as hard to find as E(X). E.g., given Q(X) and y (such that yi 6= 0
for 1 ≤ i ≤ n) one can find the error locations by checking positions where Q(αi) = 0. While
each of these polynomials e(X) , Q(X) is hard to find individually, together they are easier to find.

Note that if the algorithm does not output fail, then the algorithm produces a correct output.
Thus, to prove the correctness of the Berlekamp-Welch algorithm, we just need the following
result.

Theorem 1.2. If (P (αi))i is transmitted (where P (X) is a polynomial of degree at most k − 1)
and at most e errors occur, then the Berlekamp-Welch algorithm outputs P (X).

The proof of the theorem above follows from the subsequent claims.

Claim 1.3. There exist a pair of polynomials E(X) andQ(X) that satisfy Step 1 such that Q(X)
E(X)

=

P (X).

Note that now it suffices to argue that Q1(X)
E1(X)

= Q2(X)
E2(X)

for any pair of solutions that satisfy Step
1 since Claim 1.3 above can then be used to see that ratio must be P (X). Indeed, we will show
this to be the case:

Claim 1.4. If any two distinct solutions (E1(X), Q1(X)) 6= (E2(X), Q2(X)) satisfy Step 1, then
they will satisfy

Q1(X)

E1(X)
=
Q2(X)

E2(X)
.

Proof of Claim 1.3. We just take E(x) to be the error-locating polynomial for P (X) and let
Q(X) = P (X)E(X) where deg(Q(X)) ≤ deg(P (X)) + deg(E(X)) ≤ e+ k − 1. In particular,
define E(X) as the following polynomial of degree exactly e:

E(X) = Xe−∆(y,(P (αi))i)
∏

1≤i≤n|yi 6=P (αi)

(X − αi) (2)

By definition, E(X) is a degree e polynomial with the following property:

E(αi) = 0 iff yi 6= P (αi).

We now argue thatE(X) andQ(X) satisfy (1). Note that ifE(αi) = 0, thenQ(αi) = P (αi)E(αi) =
yiE(αi) = 0. When E(αi) 6= 0, we know P (αi) = yi and so we still have P (αi)E(αi) = yiE(αi),
as desired. 2

Proof of Claim 1.4. Note that the degrees of the polynomials Q1(X)E2(X) and Q2(X)E1(X) are
at most 2e+ k − 1. Let us define polynomial R(X) with degree at most 2e+ k − 1 as follows:

R(X) = Q1(X)E2(X)−Q2(X)E1(X). (3)
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Furthermore, from Step 1 we have, for every i ∈ [n] ,

yiE1(αi) = Q1(αi) and yiE2(αi) = Q2(αi). (4)

Substituting (4) into (3) we get for 1 ≤ i ≤ n:

R(αi) = (yiE1(αi))E2(αi)− (yiE2(αi))E1(αi)

= 0.

The polynomial R(X) has n roots and

deg(R(X)) ≤ e+ k − 1 + e

= 2e+ k − 1

< n,

Where the last inequality follows from the upper bound on e. Since deg(R(X)) < n, then we get
that the polynomials Q1(X)E2(X) and Q2(X)E1(X) agree on more points than their degree, and
hence they are identical. Note that as E1(X) 6= 0 and E2(X) 6= 0, this implies that Q1(X)

E1(X)
= Q2(X)

E2(X)
,

as desired. 2

1.1 Implementation of Berlekamp-Welch Algorithm
In Step 1, Q(X) has e + k unknowns and E(X) has e + 1 unknowns. For each 1 ≤ i ≤ n, the
constraint in (1) is a linear equation in these unknowns.

Thus, we have a system of n linear equations in 2e+ k + 1 < n+ 2 unknowns. By claim 1.3,
these system of equations have a solution. The only extra requirement is that the degree of poly-
nomial E(X) should be exactly e. We have already shown E(X) in equation (2) to satisfy this
requirement. So we add a constraint that the coefficient of Xe in E(X) is 1. We have n + 1
linear equation in at most n + 1 variables, which we can solve in time O(n3), e.g. by Gaussian
elimination. Finally, note that Step 2 can be implemented in time O(n3) by “long division.”

Theorem 1.5. For any [n, k]q Reed-Solomon code it can be uniquely decoded in O(n3) time up to
D
2

= n−k+1
2

number of errors.

2 Errors And Erasures decoding of RS codes
We have seem that there exists polynomial time constructible codes that lie on the Zyablov bound
and can be corrected up to 1/4 of their designed distance. Next, we look into codes that correct
up to 1

2
design distance for explicit codes on the Zyablov bound. For this one we will need correc-

tion from both errors and erasures. Berlekamp-Welch algorithm corrects up to e < D
2

errors for
[N,K,D]Q RS codes. We have already seen that we can correct s < D erasures.1 We will prove
the following more general result in the next lecture:

1The number of unknown positions is s and the number of known position is N − s ≥ N −D + 1 = K. Having
K constrains we can recover polynomial of degree at most K − 1 by interpolation ( K unknowns and K equations) in
O(N3) time.
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Proposition 2.1. Reed-Solomon codes can be corrected from e errors and s erasures as long as
2e+ S < D in O(N3) time.

References
[1] P. Gemmell and M. Sudan. Highly resilient correctors for polynomials. Information processing

letters, 43(4):169–174, September 1992.

[2] W. Wesley Peterson. Encoding and error-correction procedures for bose-chadhuri codes. IEEE
Transactions on Information Theory, 6:459–470, 1960.

4


	Berlekamp-Welch Algorithm
	Implementation of Berlekamp-Welch Algorithm

	Errors And Erasures decoding of RS codes

