
Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007)

Lecture 28: Generalized Minimum Distance Decoding
November 5, 2007

Lecturer: Atri Rudra Scribe: Sandipan Kundu & Atri Rudra

1 Decoding From Errors and Erasures
So far, we have seen the following result concerning decoding of RS codes:

Theorem 1.1. An [n, k]q RS code can be corrected from e errors (or s erasures) as long as e <
n−k+1

2
(or s < n− k + 1) in O(n3) time.

Next, we show that we can get the best of the errors and erasures worlds simultaneously:

Theorem 1.2. An [n, k]q RS code can be corrected from e errors and s erasures in O(n3) time as
long as

2e + s < n− k + 1. (1)

Proof. Given a received word y ∈ (Fn
q ∪{?})n with s erasures and e errors, let y′ be the sub-vector

with no erasures. This implies y′ ∈ Fn−s
q , which is a valid received word for an [n − s, k]q RS

code. Now run the Berlekamp-Welch algorithm on y′. It can correct y′ as long as

e <
(n− s)− k + 1

2
.

This condition is implied by (1). Thus, we have proved one can correct e errors under (1). Now
we have to prove that one can correct the s erasures under (1). Let z′ be the output after correcting
e errors. Now we extend z′ to z ∈ (F∪ {?})n in the natural way. Finally, run the erasure decoding
algorithm on z. This works as long as s < (n− k + 1), which in turn is true by (1).

The time complexity of the algorithm above is O(n3) as both the Berlekamp-Welch algorithm
and the erasure decoding algorithm can be implemented in cubic time.

Next, we will use the errors and erasure decoding algorithm above to design decoding algo-
rithms for certain concatenated codes that can be decoded up to half their design distance.

2 Generalized Minimum Distance Decoding
In the last lecture, we studied the natural decoding algorithm for concatenated codes. In particular,
we performed MLD on the inner code and then fed the resulting vector to a unique decoding

1



algorithm for the outer code. As was mentioned last time, a drawback of this algorithm is that it
does not take into account the information that MLD can offer. E.g., the situations where a given
inner code received word has a Hamming distance of one vs. (almost) half the inner code distance
are treated the same by the algorithm. It seems natural to try and make use of this information.
Forney in 1966 devised such an algorithm, which is called Generalized Minimum Distance (or
GMD) decoding [1]. We study this algorithm next and our treatment follows that of [2].

In the sequel, let Cout be an [N, K, D]qk code that can be decoded from e errors and s erasures
in polynomial time as long as 2e + s < D. Let Cin be an [n, k, d]q code with k = O(log N)

We will in fact look at three versions of the GMD decoding algorithm. The first two will
be randomized algorithms while the last will be a deterministic algorithm. We begin with the
randomized version as it presents most of the ideas in the final algorithm.

2.1 GMD algorithm (Version 1)
Before we state the algorithm we look at a special case of the problem to build up some intuition.
Consider the received word y = (y1, . . . , yN) ∈ [qn]N with the following special property: for
every 1 ≤ i ≤ N , either yi = Cin(y′i) or ∆(yi, Cin(y′i)) ≥ d/2, where for every 1 ≤ i ≤ N , define
y′i = MLDCin

(yi). Now we claim that if ∆(y, Cout ◦Cin) < dD/2, then there are < D positions i
such that ∆(yi, Cin(y′i)) ≥ d/2 (call such a position bad). This is because for every bad position i,
by the definition of y′i, ∆(yi, Cin) ≥ d/2. Now if there are at least D bad positions, this will imply
that ∆(y, Cout ◦ Cin) ≥ dD/2, which is a contradiction. Now note that we can decode y by just
declaring an erasure at every bad position and running the erasure decoding algorithm for Cout on
the resulting vector. The GMD algorithm below generalizes these observations to the general case:

Input: y = (y1, . . . , yN) ∈ [qn]N .

Step 1: For every 1 ≤ i ≤ N :

(a) Compute y′i = MLDCin
(yi).

(b) Compute wi = min
(
∆(Cin(y′i), yi),

d
2

)
.

(c) With probability 2wi

d
, set y′′i ←?, otherwise set y′′i = y′i.

Step 2 : Run errors and erasure algorithm for Cout on y′′ = (y′′1 , . . . , y
′′
N).

Note that if for every 1 ≤ i ≤ N , either Cin(y′i) = yi or ∆(Cin(y′i), yi) ≥ d/2, then the GMD
algorithm above does exactly the same as in the discussion above.

By our choice of Cout and Cin, it is easy to see that the algorithm above runs in polynomial
time. More importantly, we will show that the final (deterministic) version of the algorithm above
can do unique decoding of Cout ◦ Cin up to half its design distance.

Theorem 2.1. Let y be a received word such that there exists a codeword c = (c1, . . . , cN) ∈
Cout ◦ Cin ⊆ [qn]N such that ∆(c,y) < Dd

2
. Then the deterministic GMD algorithm outputs c.

2



As a first step, we will show that in expectation the randomized GMD algorithm above works.

Lemma 2.2. Let the assumption in Theorem 2.1 hold. Further, if y′′ has e′ errors and s′ erasures
(when compared with c) after Step 1 , then

E[2e′ + s′] < D.

Note that if 2e′ + s′ < D, then the algorithm in Step 2 will output c. The lemma above says
that in expectation, this is indeed the case.

Proof of lemma 2.2. For every 1 ≤ i ≤ N , define ei = ∆(yi, ci). Note that this implies that

N∑
i=1

ei <
Dd

2
. (2)

Next for every 1 ≤ i ≤ N , we define two indicator variables:

X?
i = 1 iff y′′i =?,

and
Xe

i = 1 iff Cin(y′′i ) 6= ci and y′′i 6=?.

We claim that we are done if we can show that for every 1 ≤ i ≤ N :

E[2Xe
i + X?

i ] ≤
2ei

d
. (3)

Indeed, by definition e′ =
∑
i

Xe
i and s′ =

∑
i

X?
i . Further, by the linearity of expectation, we get

E[2e′ + s′] ≤ 2

d

∑
i

ei < D,

where the second inequality follows from (2).
To complete the proof, we will show (3). Towards this end, fix an arbitrary 1 ≤ i ≤ N . We

prove (3) by a case analysis.
Case 1: (ci = Cin(y′i)) First, we note that if y′′i =? then Xe

i = 0. This along with the fact that
Pr[y′′i =?] = 2wi/d implies

E[X?
i ] = Pr[X?

i = 1] =
2wi

d
,

and
E[Xe

i ] = Pr[Xe
i = 1] = 0.

3



Further, by definition we have

wi = min

(
∆(Cin(y′i), yi),

d

2

)
≤ ∆(Cin(y′i), yi) = ∆(ci, yi) = ei.

The three relations above prove (3) for this case.
Case 2: (ci 6= Cin(y′i)) As in the previous case, we still have

E[X?
i ] =

2wi

d
.

Now in this case, if an erasure is not declared at position i, then Xe
i = 1. Thus, we have

E[Xe
i ] = Pr[Xe

i = 1] = 1− 2wi

d
.

Next, we claim that as ci 6= Cin(y′i),

ei + wi ≥ d, (4)

which implies

E[2Xe
i + X?

i ] = 2− 2wi

d
≤ 2ei

d
,

as desired.
To complete the proof, we show (4) via yet another case analysis.

Case 2.1: (wi = ∆(Cin(y′i), yi) < d/2) By definition of ei, we have

ei + wi = ∆(yi, ci) + ∆(Cin(y′i), yi) ≥ ∆(ci, Cin(y′i)) ≥ d,

where the first inequality follows from the triangle inequality and the second inequality follows
from the fact that Cin has distance d.
Case 2.2: (wi = d

2
≤ ∆(Cin(y′i), yi)) As y′i is obtained from MLD, we have

∆(Cin(y′i), yi) ≤ ∆(ci, yi).

This along with the assumption on ∆(Cin(y′i), yi), we get

ei = ∆(ci, yi) ≥ ∆(Cin(y′i), yi) ≥
d

2
.

This in turn implies that
ei + wi ≥ d,

as desired. 2

4



2.2 Version 2 of the GMD algorithm
In the first version of the GMD algorithm in Step 1(c), we used “fresh” randomness for each i.
Next we look at another randomized version of the GMD algorithm that uses the same randomness
for every i. In particular, consider the following algorithm:

Input: y = (y1, . . . , yN) ∈ [qn]N .

Step 1: Pick θ ∈ [0, 1] at random. Then for every 1 ≤ i ≤ N :

(a) Compute y′i = MLDcin
(yi).

(b) Compute wi = min
(
∆(Cin(y′i), yi),

d
2

)
.

(c) If θ < 2wi

d
, set y′′i ←?, otherwise set y′′i = y′i.

Step 2 : Run errors and erasure algorithm for Cout on y′′ = (y′′1 , . . . , y
′′
N).

We note that in the proof of Lemma 2.2, we only use the randomness to show that

Pr[y′′i =?] =
2wi

d
.

In the current version of the GMD algorithm, we note that

Pr[y′′i =?] = Pr

[
θ ∈

[
0,

2wi

d

]]
=

2wi

d
,

as before (the last equality follows from the our choice of θ). One can verify that the proof of
Lemma 2.2 can be used to show that even for version 2 of GMD, E[2e′ + s′] < D.

Next lecture, we will see how to derandomize the above version of the GMD algorithm by
choosing θ from a polynomially sized set (as opposed to the current infinite set [0, 1].)

References
[1] G. David Forney. Generalized Minimum Distance decoding. IEEE Transactions on Informa-

tion Theory, 12:125–131, 1966.

[2] Venkatesan Guruswami. Error-Correcting Codes: Con-
structions and Algorithms, Lecture no. 11. Available at
http://www.cs.washington.edu/education/courses/533/06au/, Novem-
ber 2006.

5


	Decoding From Errors and Erasures
	Generalized Minimum Distance Decoding
	GMD algorithm (Version 1)
	Version 2 of the GMD algorithm


