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1 Derandomized GMD algorithm

We introduced the GMD algorithm in the last lecture. Recall that we presented two randomized
versions of the algorithm last time. Today we will present the derandomized version. Note that
last time we proved that there exists a valueθ ∈ [0, 1] such that the decoding algorithm works
correctly. Obviously we can obtain such aθ by doing an exhaustive search forθ. Unfortunately,
there are uncountable choices ofθ becauseθ ∈ [0, 1]. However, this problem can be taken care of
by the standard discretization trick.

DefineQ = {0, 1} ∪ {2w1

d
, · · · , 2wN

d
}. Then because for eachi, wi = min(∆(y′i,yi), d/2), we

have
Q = {0, 1} ∪ {q1, · · · , qm}

whereq1 < q2 < · · · < qm for somem ≤ bd
2
c. Notice that for everyθ ∈ [qi, qi+1), theStep 1

of the second version of GMD algorithm outputs the samey′′. Thus, we need to cycle through all
possible value ofθ ∈ Q, leading to the following algorithm:

Input : y = (y1, . . . , yN) ∈ [qn]N .

Step 1: For everyθ ∈ Q do the following.

(a) Computey′i = MLDcin(yi) for 1 ≤ i ≤ N .

(b) Computewi = min
(
∆(Cin(y′i), yi),

d
2

)
, for every1 ≤ i ≤ N .

(c) If θ < 2wi
d

, sety′′i ←?, otherwise sety′′i = y′i.

(d) Run errors and erasure algorithm forCout on y′′ = (y′′1 , . . . , y
′′
N). Let cθ be the codeword in

Cout ◦ Cin corresponding to the output of the algorithm, if any.

Step 2: Among all thecθ output inStep 1(d), output the one closest toy.

Note that as|Q| ≤ O(N) and each run of the algorithm inStep 1can be computed in polyno-
mial time, the algorithm above can also be implemented in polynomial time. Thus we have shown
the following:

Theorem 1.1. For every constant rate, there exists an explicit linear binary code on the Zyablov
bound. Further, the code can be decoded up to half the Zyablov bound in polynomial time.
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The following table summarizes the main results we have seen so far for binary codes:

Shannon Hamming (Unique Decoding) Hamming (List Decoding)
Existence Capacity=1−H(p) GV ≤ capacity≤MRRW Capacity=1−H(p)
Explicit Codes ? Zyablov bound ?
Efficient Algorithms ? half Zyablov bound ?

Next, we tackle the open questions in the first column of the table above.

2 Achieving capacity ofBSCp
Recall that there exist linear codes of rate1−H(p)− ε such that decoding error probability is not
more than2−δn, δ = Θ(ε2) on theBSCp. (This follows from the Shannon’s capacity proof for
BSCp adopted to the linear code case.) This leads to the following natural question, which we had
raised a few lectures back.

Question 2.1.Can we achieve reliable transmission with polynomial time decoding overBSCp
with explicit codes that have rate of1−H(p)− ε, ε > 0?

Forney answered the question above in the affirmative by using concatenated codes. (As was
mentioned earlier, this was Forney’s motivation for inventing code concatenation: the implication
for the rate vs. distance question was studied by Zyablov later on.)

Next, we will present a positive answer to the question above by using a concatenated code
Cout ◦ Cin with the following properties (whereγ > 0 is a parameter that depends only onε and
will be fixed later on):

(i) Cout: The outer code with block lengthN and rate1 − ε
2

overF2k , with k = O(logN).
Further, the outer code has a unique decoding algorithmDout that can correct at mostγ
fraction of worst-case errors in timeTout(N).

(ii) Cin: The inner code has dimensionk, dimensionn and a rate of1 − H(p) − ε/2. Further,
there is a decoding algorithmDin that runs inTin(k) time and has decoding error probability
no more thanγ

2
overBSCp.

SupposeC∗ = Cout ◦ Cin. Then, it is easy to check that

R(C∗) = (1− ε

2
)(1−H(p)− ε

2
) ≥ 1−H(p)− ε,

as desired.
The decoding algorithm forC∗ is the natural one. In particular, given the received wordy =

(y1, · · · , yN) ∈ FN
qn ,

Step 1: Let y′i = Din(yi), 1 ≤ i ≤ N .

Step 2: RunDout ony′ = (y′1, . . . , y
′
N).
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Note that encodingC∗ takes timeO(N2)+O(Nk2) = O(N2). Further, the decoding algorithm
above takes timeNTin(k) + Tout(N) = NO(1) as long asTout(N) = NO(1), andTin(k) = 2O(k).

Next lecture, we will show that the decoding algorithm above has exponentially small decoding
error probability overBSCp. Further, we will use constructions that we have already seen in this
course to instantiateCout andCin with the required properties.
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