
Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007)

Lecture 3: Error Correction and Distance
August 31, 2007

Lecturer: Atri Rudra Scribe: Michael Pfetsch & Atri Rudra

The following topics were discussed in the last lecture:

• Shannon and Hamming noise models.

• The C3,rep repetition code can correct ≤ 1 errors and has a rate of R = 1
3
.

• The C⊕ parity code cannot correct even 1 error and has a rate of R = 4
5
.

The last two points confirmed our intuition that one can correct more errors if the underlying code
has more redundancy. In today’s lecture we will look a bit more closely at the parity code C⊕,
which among other things will motivate another important parameter of codes called the distance.

1 A closer look at C⊕

Last lecture we saw that C⊕ cannot correct even 1 error. However, we will now see that C⊕ can
detect one error. Consider the following algorithm. Let y = (y1, y2, y3, y4, y5) be the received
word– compute b = y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5 and declare an error if b = 1. Note that when no error
has occurred during transmission, yi = xi for 1 ≤ i ≤ 4 and y5 = x1 ⊕ x2 ⊕ x3 ⊕ x4, in which
case b = 0 as required. If there is a single error then either yi = xi ⊕ 1 (for exactly one 1 ≤ i ≤ 4)
or y5 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ 1. It is easy to check that in this case b = 1. In fact, one can extend
this argument to to obtain the following result.

Proposition 1.1. The parity code C⊕ can detect an odd number of errors.

Let us now revisit the example that showed that one cannot correct 1 error using C⊕. Consider
the two codewords in C⊕, u = 00000 and v = 10001 (which are codewords corresponding to mes-
sages 0000 and 1000 respectively). Now consider the two scenarios when u and v are transmitted
and a single error occurs resulting in the received word r = 10000 in both cases. Now given the
received word r and the fact that at most one error can occur, the decoder has no way of knowing
whether the original transmitted codeword was u or v. Looking back at the example, it is clear that
the decoder gets “confused” because the two codewords u and v do not differ in a lot of positions.
This notion is formalized in the next section.

1

2 Distance of a code
We now define a notion of distance (due to Hamming) that captures the concept that the two vectors
u and v are “close-by.”

Definition 2.1 (Hamming distance). Given u,v ∈ Σn (i.e. two vectors of length n) the Hamming
distance between u and v, denoted by ∆(u,v), is defined to be the number of positions in which u
and v differ.

Note that the definition of Hamming distance just depends on the number of differences and
not the nature of the difference. For example, for the vectors u and v from the previous section,
∆(u,v) = 2, which is equal to the Hamming distance ∆(u,w), where w = 01010, even though
the vectors v and w are not equal.

Armed with the notion of Hamming distance, we now define another important parameter of a
code.

Definition 2.2 (Minimum distance). Let C ⊆ Σn. The minimum distance (or just distance) of C
is defined to be

d = min
c1 6=c2∈C

∆(c1, c2)

It is easy to check that the repetition code C3,rep has distance 3. We now claim that the distance
of C⊕ is 2. This is a consequence of the following observations. If two messages m1 and m2

differ in at least two places then ∆(C⊕(m1), C⊕(m2)) ≥ 2 (by only looking at the first four bits
of the codewords). If two messages differ in exactly one place then the parity bits in the corre-
sponding codewords are different which implies a Hamming distance of 2 between the codewords.
Thus, C⊕ has smaller distance than C3,rep and can correct less number of errors than C3,rep, which
seems to suggest that a larger distance implies greater error correcting capabilities. The next result
formalizes this intuition.

Proposition 2.3. The following statements are equivalent for a code C:

1. C has minimum distance d,

2. If d is odd, C can correct (d− 1)/2 errors.

3. C can detect d− 1 errors.

4. C can correct d− 1 erasures.1

Remark 2.4. Property (2) above for even d is slightly different. In this case, one can correct up to
d
2
− 1 errors but cannot correct d

2
errors. Proof of this claim is similar to that of Proposition 2.3.

Note that this implies that if a code C is t-error correctable then it either has a distance of 2t + 1
or 2t + 2.

1In the erasure noise model, the receiver knows where the errors have occurred. In this model, an erroneous symbol
is denoted by “?”, with the convention that any non-? symbol is a correct symbol.

2

Before we prove Proposition 2.3, let us apply it to the codes C⊕ and C3,rep which have distances
of 2 and 3 respectively. Proposition 2.3 implies the following facts that we have already proved:

• C3,rep can correct 1 errors.

• C⊕ can detect 1 error (but cannot correct 1 error).

The proof of Proposition 2.3 will need the following decoding function. Maximum likelihood
decoding (MLD) is a well studied decoding method for error correcting codes, which outputs the
codeword closest to the received word in Hamming distance (with ties broken arbitrarily). In
particular, the MLD function denoted by DMLD : Σn → C is defined as follows. For every
y ∈ Σn,

DMLD(y) = arg min
c∈C

∆(c,y).

Proof of Proposition 2.3 We will complete the proof in two steps. First, we will show that if
property 1 is satisfied then so are properties 2,3 and 4. Then we show that if property 1 is not
satisfied then none of properties 2,3 or 4 hold.

Assume C has distance d. We first prove 2 (for this case assume that d = 2t+1). We now need
to show that there exists a decoding function such that for all error patterns with at most t errors
it always outputs the transmitted message. We claim that the MLD function has this property.
Assume this is not so and let c1 be the transmitted codeword and let y be the received word. Note
that

∆(y, c1) ≤ t. (1)

As we have assumed that MLD does not work, DMLD(y) = c2 6= c1. Note that by the definition
of MLD,

∆(y, c2) ≤ ∆(y, c1). (2)

Consider the following set of inequalities:

∆(c1, c2) ≤ ∆(c2,y) + ∆(c1,y) (3)
≤ 2∆(c1,y) (4)
≤ 2t (5)
= d− 1, (6)

where (3) follows from the triangle inequality, (4) follows from (2) and (5) follows from (1). (6)
implies that the distance of C is at most d− 1, which is a contradiction.

We now show that property 3 holds, that is, we need to describe an algorithm that can success-
fully detect whether errors have occurred during transmission (as long as the total number of errors
is bounded by d−1). Consider the following error detection algorithm: check if the received word
y = c for some c ∈ C (this can be done via an exhaustive check). If no errors occurred during
transmission, y = c1, where c1 was the transmitted codeword and the algorithm above will accept
(as it should). On the other hand if 1 ≤ ∆(y, c1) ≤ d− 1, then by the the fact that the distance of
C is d, y 6∈ C and hence the algorithm rejects, as required.

3

Finally, we prove that property 4 holds. Let y ∈ (Σ ∪ {?})n be the received word. First we
claim that there is a unique c = (c1, . . . , cn) ∈ C that agrees with y (i.e. yi = ci for every i such
that yi 6=?). (For the sake of contradiction, assume that this is not true, i.e. there exists two distinct
codewords c1, c2 ∈ C such that both c1 and c2 agree with y in the unerased positions. Note that
this implies that c1 and c2 agree in the positions i such that yi 6=?. Thus, ∆(c1, c2) ≤ |{i|yi =
?}| ≤ d − 1, which contradicts the assumption that C has distance d.) Given the uniqueness of
the codeword c ∈ C that agrees with y in the unerased position, here is an algorithm to find it: go
through all the codewords in C and output the desired codeword.

For the other direction of the proof, assume that property 1 does not hold, that is, C has distance
d− 1. We now show that property 2 cannot hold, that is, for every decoding function there exists a
transmitted codeword c1 and a received word y (where ∆(y, c1)) such that the decoding function
cannot output c1. Let c1 6= c2 ∈ C be codewords such that ∆(c1, c2) = d − 1 (such a pair exists
as C has distance d − 1). Now consider the vector y such that ∆(y, c1) = ∆(y, c2) = (d − 1)/2.
(Such a y exists as d is odd and by the choice of c1 and c2.) Now, since y could have been generated
if either of c1 or c2 were the transmitted codeword, no decoding function can work in this case.2

For the remainder of the proof, assume that the transmitted word is c1 and there exists another
codeword c2 such that ∆(c2, c1) = d − 1. To see why property 3 is not true, let y = c2. In this
case, either the error detecting algorithm detects no error or it declares an error when c2 is the
transmitted codeword and no error takes place during transmission.

We finally argue that property 4 does not hold. Let y be the received word in which the positions
that are erased are exactly those where c1 and c2 differ. Thus, given y both c1 and c2 could have
been the transmitted codeword and no algorithm for correcting (at most d − 1) erasures can work
in this case. �

2Note that this argument is just a generalization of the argument that C⊕ cannot correct 1 error.

4

	A closer look at C
	Distance of a code

