
Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007)

Lecture 30: Achieving the BSCp capacity (II)
Tuesday, November 6, 2007

Lecturer: Atri Rudra Scribe: Nathan Russell & Atri Rudra

In the last lecture, we started with the description of our BSCp capacity achieving code C∗,
which is a concatenated code Cout ◦ Cin, where Cout and Cin satisfying the following properties:

(i) Cout: The outer code with block length N and rate 1 − ε
2

over F2k , with k = O(logN).
Further, the outer code has a unique decoding algorithm Dout that can correct at most γ
fraction of worst-case errors in time Tout(N).

(ii) Cin: The inner code has dimension k, dimension n and a rate of 1 − H(p) − ε/2. Further,
there is a decoding algorithm Din that runs in Tin(k) time and has decoding error probability
no more than γ

2
over BSCp.

In today’s lecture, we will analyze the properties of C∗ and also see how to get our hands on
Cout and Cin with the desired properties.

For the rest of the lecture, we will assume that p is an absolute constant. Note that this implies
that k = Θ(n) and thus, we will use k and n interchangeably in our asymptotic bounds. Finally,
we will use N = nN to denote the block length of C∗.

1 Decoding Error Probability
We begin this section by analyzing the natural decoding algorithm that we saw in the last lecture:

Step 1: Let y′i = Din(yi), 1 ≤ i ≤ N .

Step 2: Run Dout on y′ = (y′1, . . . , y
′
N).

By the properties of Din, for any fixed i, there is an error at y′i with probability ≤ γ
2
. Each such

error is independent, since errors in BSCp itself are independent by definition. Because of this,
and by linearity of expectation, the expected number of errors in y′ is ≤ γN

2
.

Taken together, those two facts allow us to conclude that, by the Chernoff bound, the probability
that the total number of errors will be more than γN is at most e−

γN
6 . Since the decoder Dout fails

only when there are more than γN errors, this is also the decoding error probability. Expressed in
asymptotic terms, the error probability is 2−Ω( γN

n
).

1



2 The Inner Code
We find Cin with the required properties by an exhaustive search among linear codes of dimension
k with block length n that achieve the BSCp capacity by Shannon’s theorem. Recall that for such
codes with rate 1 − H(p) − ε

2
, the MLD has a decoding error probability of 2−Θ(ε2n). Thus, if

k is Ω

(
log( 1

γ
)

ε2

)
, Shannon’s theorem implies the existence of a linear code with decoding error

probability at most γ
2

(which is what we need).
Note, however, that since Shannon’s proof uses MLD on the inner code, the decoding time

for this code with dimension k is 2O(k). The construction time is even worse. There are 2O(kn)

generator matrices; for each of these, we must check the error rate for each of 2k possible trans-
mitted codewords, and for each codeword computing the decoding error probability requires time
2O(n). (To see why the latter claim is true, note that there are 2n possible messages and given any
one of these messages, one can determine (i) if the MLD produces a decoding error in time 2O(k)

and (ii) the probability that the received word can be realized, given the transmitted codeword in
polynomial time.) Thus, the overall construction time is 2O(n2).

3 The Outer Code
We need an outer code with the required properties. There are several ways to do this.

One option is to set Cout to be a Reed-Solomon code over F2k with k = Θ(logN). Then the
decoding algorithm for Cout, Dout, could be the Berlekamp-Welch algorithm. Note that for this
Dout we can set γ = ε

4
and the decoding time is Tout(N) = O(N3).

Till now everything looks on track. However, the problem is the construction time, which as
we saw earlier is 2O(n2). Our choice of n implies that the construction time is NO(logN), which
of course is not polynomial time. Thus, the trick is find a Cout defined over a smaller alphabet
(certainly no larger than 2O(

√
logN)). This is what we do next.

3.1 Using a binary code as the outer code
The main observation is that we can also use an outer code which is some explicit binary linear
code (call it C ′) that lies on the Zyablov bound and can be corrected from errors up to half its
design distance. (Recall that C ′ is the Reed-Solomon code concatenated with a code on the GV
bound.) We have seen that such a code can be constructed in polynomial time.

Note that even though C ′ is a binary code, we can think of C ′ as a code over F2k in the obvious
way: every k consecutive bits are considered to be an element in F2k (say via a linear map). Note
that the rate of the code does not change. Further, any decoder for C ′ that corrects bit errors can be
used to correct errors over F2k . In particular, if the algorithm can correct β fraction of bit errors,
then it can correct that same fraction of errors over F2k .

We will pick Cout to be C ′ when considered over F2k , where we choose k to be Θ

(
log( 1

γ
)

ε2

)
.

Further, Dout is the GMD decoding algorithm for C ′.

2



Now, to complete the specification of C∗, we relate γ to ε. The Zyablov bound gives δout =
(1−R)H−1(1− r), where R and r are the rates of the outer and inners codes for C ′. Now we can
set 1 − R = 2

√
γ (which implies that R = 1 − 2

√
γ) and H−1(1 − r) =

√
γ, which implies that

r is1 1 − O
(√

γ log 1
γ

)
. Since we picked Dout to be the GMD decoding algorithm, it can correct

δout
2

= γ fraction of errors in polynomial time, as desired.
The overall rate of Cout is simply R · r = (1 − 2

√
γ)(1 − O(

√
γ log 1

γ
)). This simplifies to

1 − O(
√
γ log( 1

γ
)). Recall that we need this to be at least 1 − ε

2
. Thus, we would be done here if

we could show that ε is Ω(
√
γ log 1

γ
), which would follow by setting γ = ε3.

3.2 Wrapping Up
We now recall the construction, encoding and decoding time complexity for our construction ofC∗.
The construction time for Cin is 2O(n2), which substituting for n, is 2O( 1

ε4
log2( 1

ε
)). The construction

time for Cout, meanwhile, is only poly(N). Thus, our overall, construction time is poly(N ) +

2O( 1
ε4

log2( 1
ε

)).
As we have seen in the last lecture, the encoding time for this code is O(N 2), and the decoding

time is NO(1) + N · 2O(n) = poly(N ) + N · 2O( 1
ε2

log( 1
ε

)). We also have shown that the decoding
error probability is exponentially small: 2−Ω( γN

n
) = 2−Ω(ε6N ). Thus, we have proved the following

result:

Theorem 3.1. For every constant p and 0 < ε < 1−H(p), there exists a code C∗ of block length
N and rate at least 1−H(p)− ε, such that

(a) C∗ can be constructed in time poly(N ) + 2O(ε−5);

(b) C∗ can be encoded in time O(N 2); and

(c) There exists a poly(N ) +N · 2O(ε−5) time decoding algorithm that has an error probability
of at most 2−Ω(ε6N ) over the BSCp.

Thus, we have answered in the affirmative the central open question from Shannon’s work.
However, there is a still somewhat unsatisfactory aspect of the result above. In particular, the
exponential dependence on 1/ε in the decoding time complexity is not nice. This leads to the
following question:

Question 1. Can we bring the high dependence on ε down to poly
(

1
ε

)
in the decoding time com-

plexity?

For the binary erasure channel, the decoding time complexity can be brought down to N ·
poly(1

ε
) using LDPC codes, specifically a class known as Tornado codes developed by Luby et

al. [1]. The question for binary symmetric channels, however, is still open.

1Note that r = 1−H(
√
γ) = 1 +

√
γ log

√
γ+ (1−√γ) log(1−√γ). Noting that log(1−√γ) = −√γ−Θ(γ),

we can deduce that r = 1−O(
√
γ log(1/γ)).

3



3.3 Using Expander Codes
We begin with a theorem due to Spielman:

Theorem 3.2 ([2]). For every small enough β > 0, there exists an explicit Cout of rate 1
1+β

and

block length N , which can correct Ω

(
β2

(log 1
β

)2

)
errors, and has O(N) encoding and deciding.

Clearly, in terms of time complexity, this is superior to the previous option in Section 3.1. Such
codes are called “Expander codes.” One can essentially do the same calculations as in Section 3.1
with γ = Θ

(
ε2

log2(1/ε)

)
.2 However, we obtain an encoding and decoding time ofN · 2poly( 1

ε
). Thus,

even though we obtain an improvement in the time complexities as compared to Theorem 3.1, this
does not answer Question 1.

References
[1] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A. Spiel-

man. Efficient erasure correcting codes. IEEE Transactions on Information Theory, 47(2):569–
584, 2001.

[2] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996.

2This is because we need 1/(1 + β) = 1− ε/2, which implies that β = Θ(ε).

4


	Decoding Error Probability
	The Inner Code
	The Outer Code
	Using a binary code as the outer code
	Wrapping Up
	Using Expander Codes


