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In the last lecture, we have seen that a concatenated code can achieve the capacity of BSCp. In
today’s lecture, we focus back on Hamming’s world.

1 Achieving GV bound
Recall that there exists a linear code that lies on that GV bound. Till now the only explicit asymp-
totically good codes that we have seen are all based on code concatenation. Thus, a natural question
to ask is the following:

Question 1.1. Does there exist a concatenated code that lies on the GV bound?

Before answering the question, we note some possible pitfalls for a positive answer to the
question above.

• Concatenated codes might be too structured. Note that a linear code has some structure
(recall that a random linear code lies on the GV bound w.h.p.). However, concatenated
codes seem to be more “restrictive”.

• The natural argument for the distance of a concatenated code seems to bottleneck at the
Zyablov bound1, which we know is far from the GV bound.

We now return to Question 1.1: the answer turns out to be positive. One can fix outer code to RS
code, and use different random inner codes (like Justesen construction). This result was proved by
Thommesen [1]. Before we state the result formally, we will need to define some notions.

Definition 1.2. α(z)
4
= 1−H(1− 2z−1), 0 ≤ z ≤ 1.

We have a RS [N, RN ]2k codes as outer code, while the inner code C1
in, C

2
in, . . . , C

N
in map

vectors from Fk
2 to vectors in Fn

2 . Let Gi be the k × n generator matrix of Ci
in. We have the

concatenated code C∗ = Cout ◦ (C1
in, C

2
in, . . . , C

N
in), which is defined as follows. Let m ∈ (F2k)NR

and u = (u1,u2, . . . ,uN) = Cout(m). According to the definition of concatenated codes,

C∗(m) = (u1G1,u2G2, . . . ,uNGN)
4
= uG, where G

4
= (G1,G2, . . . ,GN)

Theorem 1.3. [1] For every 0 < r ≤ 1 and 0 < R ≤ α(r)
r

, let G1,G2, . . . ,GN be independent
random (rn)× n generator matrices Cout is a RS code with rate R and blocklength N . Then with
probability ≥ 1 − 2−Ω(nN), Cout ◦ (C1

in, C
2
in, . . . , C

N
in) has relative distance ≥ H−1(1 − rR) − ε,

for any ε > 0. Further, such a code Cout ◦ (C1
in, C

2
in, . . . , C

N
in) has rate ≥ rR.

1A generalization of code concatenation called multilevel concatenation gets us Blokh-Zyablov bound
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2 Weight distribution of RS codes
The proof will require an estimate on the number of RS codewords of a given Hamming weight.
We do this next. Given [N, K, D]2k RS code, let Aw (0 ≤ w ≤ N) denote the number of codewords
that have hamming weight w. Obviously, A0 = 1, Aw = 0, 1 ≤ w ≤ D. The following result
follows from an exact characterization of Aw for MDS codes. However, below we give a simpler
proof.

Proposition 2.1. Let 0 ≤ w ≤ N , then Aw ≤
(

N
w

)
2(w−D+1)K2.

Proof. Fix D ≤ w ≤ N . There are
(

N
w

)
ways to choose the non-zero-position in a codeword of

weight w. We will use the fact that if any K values of a codeword is fixed, then the entire codeword
is determined. Note that N − w position are already fixed to be 0. So if fix t = K − (N − w)
positions, fix the codeword. As K = N − D + 1, t = N − D + 1 − (N − w) = w − D + 1.
W.o.l.g, fixing the “first” t positions in the non-zero position determined the codeword. Since there
are ≤ 2k(w−D+1) possible such “prefixed”, Aw ≤

(
N
w

)
2k(w−D+1).

2.1 Some other function
Definition 2.2. fx(θ) = (1− θ)−1H−1(1− θx), 0 ≤ θ ≤ 1

The following property of this function will be crucial in the proof of Theorem 1.3.

Lemma 2.3. For any x ≥ 0, 0 ≤ y ≤ α(x)
x

,

min
0≤θ≤y

fx(θ) = fx(y). (1)

We will not formally prove this result. However, the following three facts are key in the proof
of Lemma 2.3.

• Fact 1: the line segment connecting (x, 0) and (α(x), H−1(1−α(x))) is tangent to H−1(1−r)
at (α(x), H−1(1− α(x))).

• Fact 2: H−1(1− r) is strictly decreasing convex function.

• Fact 3:fx(θ) is the intercept of line segment through (x, 0) and (xθ, H−1(1 − xθ)) on the
y-axis.
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