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Lecture 32: Concatenated Codes Achieve the GV Bound (II)
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Lecturer: Atri Rudra Scribe: Michael Pfetsch & Atri Rudra

In the last lecture, we began to show that concatenated codes achieve the Gilbert-Varshamov
(GV) bound. We started by asking the question, Does there exist a concatenated code that lies on
the GV bound? We also made a proposition with a lemma [1]] regarding the weight distribution
of Reed-Solomon (RS) codes. We now continue to show that concatenated codes achieve the GV
bound, starting with the declaration of a new theorem.

Theorem 0.1. (Thommesen): For every )0 < r < 1,0 < R < alr) pick N independent random

r

k x n matrices Gq,--- ,Gn (and let the corresponding codes be C} . --- CN, rate R Reed-

mr m’

Soloman Code). Let the codewords C* be defined to be C* = Coyy 0 (C},, -+ ,C}). For large
enough n and N, the following inequality holds true:

Prg—(G,, Gn) |3 @ non-zero codeword in C* of weight < (H~' (1 —rR) —e)nN] < 9~ nN)
6]

Note that /V is the block-length of the outer code and that C"* has rate R with high probability.
We also define « (2) as,

az)21-H(1-271) (2)

where 0 < z < 1, and we define f, (0) as,

fo(0) & (1—0)H ' (1—=206) 3)
where z, 0 € [0, 1]. We now make the following proposition:
Proposition 0.2. Ifwe let 0 <y < @, then the following is true:
man 1
0<p<ys@=0-y H 1-ay “

Proof. We begin with a proof by “picture” and make a geometric interpretation of « (-) and f, (+),
and make the following two observations:

1. Observation 1: The line segment between (z,0) and (« (x), H~' (1 — a(x))) is tangent to
H1(1-2).

2. Observation 2: f, (0) is the y-intercept of the line segment that joins (z,0) and (6z, H~' (1 — 0x)).



Figure 1: Geometric illustration of « (-) and f, (), adapted from [2| Figure 2].

Figure 1 is a graphical realization of the above observations. Note that the function H ! (1 — z)
is a strictly decreasing convex function in z. The above two observations and figure together imply
the proposition.

]

Proposition 0.3. Let u = (uy,--- ,u,) € Cou with wt (u) = w, and let (y1,- - ,y,) =y €
(IFS)N such that u; = 0 = y; = 0then = Pr[uG = y| = 27", where the codewords are
of the form uG = (uGyq, - -- ,unGn) [2]].

Proof. Since u = 0, we know that u;G; = 0. We can also make the following two observations:

1. Observation 1: u; = 0 = u;G; is arandom vector in [F5. This is because u # 0 —
PruwG; =y =2

2. Observation 2: ¢ # j = u;G; and u;G; are independent random vectors. This is true
because G; and Gj are independent, as they were initially chosen to be independent random
matrices.

for ve (IFS) N

wty (v) — binary Hamming at h A0 H-1(1—rR)—enN |°



We can now move on to the formal proof:

Proof. We want to prove that the probability that there exists a codeword, u, in the RS code C,
such that the weight of the product uG is less than A, is less than 2-2nN) a5 follows:

Pr[3u € G,y {0} such that wty (uG) < h] < 279N) 5)

We now define a “bad event”. We again define the received codeword as u = (uq, -+ ,u,) €
Cout, and we let w = wt (u) be the weight of that codeword (D < w < N). Note that D =
N — NR+ 1. For the received codeword, u, the probability that the weight, wt, (uG), is less than
h is small.

Prlwty (uG) < h] = Z PriuG=y]=2""
y€(Fan )™, such that wia (y)<h
" nw
= > (M)
; i
1—0

< guwH(5f) g [as long as h < %]

(L)

We now make a clever application of the Union bound:

Prg [3u € Cou\ {0} suchthat wty (uG) <h] < > Prlwt (uG) < h]
ueCout\{0}
N
= Z Z [Pr[wty (uG) < hl]
w=D | u€Coyt,wt(u)=w
N

< ZAW.Q—nw(l—H(%)) (7)
< 3 () o) ey

Where (7] follows from @ and (8| follows because (]u\f ) < 2N Continuing with the proof, we
have:



< 3 [ o]
< iv: [2V] [2rrw-DH)] [2,%(14,(%))]
| RIOREE|
= i 2 ol 2i-5>0 I o

w=D >92-n(1=R)N >2-Q(nN)

In[9] note that 2™ > 2-n(1L-R)N > 9-Q(nN) We define the term § as follows:

0= (10)

€
2

Note that the term 2['~# () —r(1-3+3) -] > 0 is exponentially small and is strictly greater
than 0. This term is satisfied if for every w such that D < w < N, the following inequality holds

true:
1—H(i)—r(1—2+l)—ﬂ25 (11)
nw w w nw

h _1 D 1 1
= (- 5) - ] "

h Wy D 1 1
@mgﬁH [1—T<1—E+E)—m—5:| (13)
0é1_2+l:1_m+1 (14)

w w w w

w_ . -1 .

Y-(-e1-R) (15)

D<w<N<&0<O0<R

We need to show that for every 6 such that 0 < # < R, the following inequality is true:



h o 1

S <(1-RO-0OTH'|1-r— ———— — 1
“ < (1= R)(1-0) et (16)

min 11 1
— < (1-R 1—-60) H l—r — ———— =9 17
<:nw ( )O§9<R( ) " n(l—R) an
———
—24(large enough n)
I 0 |

In inequality (1’7} above, we note that, for large enough n, the following is true:

1
n(l-R)

This allows the above inequality to be simplified, as follows:

=—2) (18)

min 1 yr_1
— < — — —
= — (1-R) 0<0<R (1-20) Hv 11 r@l (19)
fr(0)

The proof is concluded by noting that, by proposition [0.2] the above inequality is true if the
following is true:
h 1
< —<({1-R(1-R)  H (1-rR)—c¢ (20)
nN
and choosing

h<(H'(1-rR)—e)nN (21)

This concludes the proof.
O

We need to show that the set of codewords, C*, has rate r R not all G; might have full rank, but
as C'* has distance greater than or equal to one with high probability, it has rate r R.
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