Error Correcting Codes: Combinatorics, Algo	rithms and Applications	(Fall 2007)
Lecture 34: Iterative Message Passing Decoder		
November 11, 2007		
Lecturer: Atri Rudra	Scribe: Michael Pfetsch	n & Atri Rudra

The last lecture introduced the Low Density Parity Check (LDPC) codes and their decoding on the binary erasure channel with erasure probability α , BEC_{α} . We now complete a description of the iterative message passing algorithm for decoding regular LDPC codes on the BEC_{α} .

1 Iterative message passing decoder for BEC_{α} (Regular LDPC codes)

The iterative message passing decoder for the BEC_{α} , with regular LDPC codes, is described as follows:

Variable to check nodes

Figure 1: A factor graph for the mapping of message bits to a parity check bit.

$$\Psi_{c_i}^{t,p_j}\left(y, m_1^{t-1}, \cdots, m_{d_v-1}^{t-1}\right) = \begin{cases} b & \text{if at least one of } y_i, m_1^{t-1}, \cdots, m_{d_v-1}^{t-1} \text{ is } b \in \{0, 1\}\\ ? & \text{if } y_i = m_1^{t-1} = \cdots = m_{d_v-1}^{t-1} = ? \end{cases}$$
(1)

$$\Psi_{p_j}^{t,c_i}\left(y, m_1^{t-1}, \cdots, m_{d_c-1}^{t-1}\right) = \begin{cases} ? & \text{if any one of } m_1^{t-1} = ? \\ m_1^{t-1} \oplus m_2^{t-1} \oplus \cdots \oplus m_{d_c-1}^{t-1} & \text{otherwise} \end{cases}$$
(2)

Figure 2: A factor graph for a regular LDPC code $((d_v, d_c) \ge 1)$.

Figure 3: A factor graph for the mapping of parity check bits to a message bit.

Claim 1.1. When a value in $\{0, 1\}$ is sent as a message, it is correct. $p_j \rightarrow c_i \Rightarrow i^{th}$ value = b

We now provide a sketch of the proof of this claim.

Proof. For the scope of this proof, let us temporarily define A to be the event that the correct value was sent.

By induction, we conclude that at t = 0 (var \rightarrow check), $y \in \{0, 1\} \iff A$. For t > 0 (check \rightarrow var). By induction, $m_1^{t-1}, \cdots, m_{d_c-1}^{t-1}$ are correct values. By the parity check condition, $c_i \oplus m_i^{t-1} \oplus ... \oplus m_{d_c}^{t-1} = 0$ (var \rightarrow check) if $y \in \{0, 1\} \Rightarrow$ done. By induction, any $m_i^{t-1} \in \{0, 1\}$ is a correct value (no "conflict").

Remark 1.2. Messages are taken from the set $\{-1, 0, 1\}$, where a "1" is encoded as a "-1", a "0" is encoded as a "1", and and erasure is encoded as a "0". We can then make the following

conclusion:

$$\Psi_{p_i}^{t,c_j} = \prod_{i=1}^{d_c-1} m_i^{t-1}$$
(3)

We can now begin a discussion of the decoding algorithm.

2 Decoding algorithm

Let us define the variable l as a parameter. Run the following steps for l rounds:

Round *l*

Phase 1: c_i sends message to p_j using $\Psi_{c_i}^{p,2l}(\dots)$ (for l = 0, c_i sends y_i to p_j) Phase 2: p_j sends message c_i using $\Psi_{p_i}^{c_i,2l_t}(\cdot)$

We now describe the paradigm proposed by R. G. Gallager, which can be divided into the following three steps:

- 1. Step 1: Code construction: The code is constructed by picking an explicit graph of girth $g = \Omega(\log(n))$ as a factor graph. (4l < g)
- 2. Step 2: Analysis of decoder: Given an edge, let s_e^r be the probability that e_{in} erasure is passed over e at round r. It is now necessary to derive a recurrence relation between s_e^{r+1} and s_e^r .
- Step 3: Threshold computation: The threshold α* is computed (either analytically or experimentally) such that, for every α < α*, the probability of error, p_e, approaches zero, as p^l_e → 0, for any e (If α > α*, then p^l_e > 0). We conclude that one can have reliable transmission over BEC_α for every α < α*.

We will not cover Step 1 at this time. We refer the reader to the book *Low-Density Parity-Check Codes*, by R. G. Gallager [1], for further details of Step 1. The following three claims are made for Step 2:

Claim 2.1. $s_e^r = s_{e'}^r, \forall e, e'$

To prove this claim, we simply use s^r , and the rest if the proof follows from induction.

Claim 2.2. *Messages received by any node in round* $r \leq l$ *are all independent.*

Claim 2.2 can be proved by the following proof by picture:

Proof. (by picture) Consider a check node p_i . The "dependence" tree is unraveled up to round 0. In Phase 1 of the decoding algorithm, the leaves of the tree are $y'_i s$.

Before making the final claim, note that every message depends on distinct $y'_i s$, each of which are independent random variables by a property of the BEC_{α} .

Figure 4: Parity-check "dependence" tree

This claim can be proved with the following proof by contradiction:

Proof. For the scope of this proof, let us temporarily define A as be the event that all of the leaves of the tree do not correspond to $y'_i s$ for distinct i values, and let us also temporarily define B as the event that a cycle in the factor graph exists. The event B could occur if the leaves w and w' corresponded to the same y_i value (or variable node). We assume that $A \implies B$, and consider the following cycle in the factor graph:

$$\underbrace{w \nleftrightarrow p_j \nleftrightarrow w'}_{\leq 2l}$$

Thus, there is a cycle in the factor graph of length $\leq 4l < g$, and the event B is true, which is a contradiction. We conclude that the final claim is true.

Thus, we can observe that the random variables, y_i , which correspond to distinct messages, i, in the tree, are independent random variables.

References

[1] R. G. Gallager. Low-Density Parity-Check Codes. M.I.T. Press, Cambridge, MA, 1963.