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We recall that in BECα, we can receive0, 1 or ? at each node.
We recall that when considering communications sent from a variable node to a check node, if

the variable node in question got someb ∈ {0, 1} as its received word, it will always sendb since
it now knows the value.
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In the last lecture, we saw that the message sent from check node to variable nodeci depends
on the messages it received from nodes other thanci itself. Using this property and the fact that the
number of iterations is at most a fourth of the girth of the factor graph, we showed that all messages
received by a check (or, for that matter, variable) node in any roundi < ℓ are independent random
variables. In another lecture, we will see that we can implement this message passing algorithm in
O(n) time.

Recall, we definedsr as the probability of an erasure being passed from variable to check nodes
in roundr, ands′r as being the probability of an erasure being passed in the other drection. Next,
we definesr+1 in terms ofsr.

Recall that in roundr + 1, ci sends an erasure topj if and only if all its incoming messages
in roundr were erasures and it receivedyi =?. Thus,sr+1 = α · (s′r)

dv−1, where we used the
fact that all the messages received byc1 are independent random variables and the fact thats′r is
independent of the choice of edge.

pi will send an erasure tocj if any one of the incoming messages was an erasure. Thus, we
have thats′r = (1 − sr)

dc−1 and

sr+1 = α(1 − (r − sr)
dc−1)dv−1.
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1 Threshold Computation

Next, we will analyze the performance of the message passingalgorithm. To do that we will need
the following definition.

Definition 1.1. α∗ = minx∈[0,1]
x

(1−(1−x)dc−1)dv−1

Theorem 1.2.If α < α∗, the message decoder recovers the transmitted code word with probability
1 − 2−nΩ(1)

.

Proof. Pickℓ = ⌊g−1
4
⌋ (as we need4ℓ < g, whereg is the girth in roundℓ andℓ is the total number

of rounds for our proof that all messages are independent variables). Then,ℓ = Ω(log n).
We will show thatsℓ ≤ 2−nΩ(1)

.
By the union bound the probability that there’s no erasure sent in roundℓ is at least1 − (#

edges)sℓ, and since the number of edges isO(n), this is at least1 − 2−nΩ(1)
, as required.

We show this in two steps:

1. After t = O(1) rounds,st is less thanmin( 1
dc+1

) , b − 1.

2. For any roundr ≥ t, sr+1 < s1+ε
r for someε > 0.

If we can show these two steps to be true, we will have thatsℓ ≤ 2−nΩ(1)
. This holds since

sℓ < (st)
(1+ε)ℓ−t

and so, by Step 1,sℓ < ( 1
a
)(1+ε)ℓ−t

for somea > 1. Finally, ast = O(1) and

ℓ = Ω(log n), sℓ ≤ 2−nΩ(1)
.

We will now show that the statements above are true.
We begin with step 1.
Defineg(x) , x

(1−(1−x)dc−1)dv−1 , and note that we haveα∗ = minx∈[0,1] g(x).Definef(α1, x) =

α(1 − (1 − x)dc−1)dv−1. Note thatsr+1 = f(α, sr).
Further, by definition,

f(α, x) =
αx

g(x)
= (

α

α∗
)(

α∗x

g(x)
) ≤ (

α

α∗
)x,

where the inequalitry follows from the fact thatα∗ ≤ g(x).
Thus, for allr, sr+1 < ( α

α∗
)sr, and note thatα

α∗
< 1.

To make sure thatsr < b where b is NEED DEF HERE, we can use the above equation,
t = O(log α

α∗

(α
b
)) times. Note thatt = O(1) as claimed.

This proved Step 1. We now move to Step 2. For this, we will needthe following fact: Fix
r/geqt. If a ≥ 1 is an integer andax < 1, (1 − x)a ≥ 1 − ax. We leave the proof as an exercise.

Using the fact above and the fact thatsr ≤
1

dc−1
(asst ≤

1
dc−1

andsr ≤ st we get:

sr+1 = α(1 − (1 − sr)
dc−1)dv−1 ≤ α((dc − 1)sr)

dv−1

By Step 1, we also havesr ≤ st < 1

(α(dc−1)dv−1)
1

dv−2−ε

and it is also the case thatsr+1 < s
(1+ε)
r .

This completes the proof.
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Using standard calculus, it can be shown thatα∗ is is the root of the polynomialP (x) =
(dv−1

dc−1
− 1)xdc − 2 −

∑dc−3
i=0 xi.

Remark 1.3. As a few concrete notes, from this formula, note that whendv = 2, α∗ = 0 so for
any meaningful performance we needdv ≥ 3 which then requiresdc ≥ 4 for positive rate. If we
choose these exact values,dv = 3 anddc = 4, we haveα∗ = 0.6474. At capacity, we would have
α = 1− rate and since rate is1− dv

dc
, this is 3

4
= 0.75 < α∗. In fact, it can be shown that capacity

is never achieved for any fixed values ofdv anddc.
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