## Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 35: Threshold Computation November 16, 2007

Lecturer: Atri Rudra

Scribe: Nathan Russell

We recall that in  $BEC_{\alpha}$ , we can receive 0, 1 or ? at each node.

We recall that when considering communications sent from a variable node to a check node, if the variable node in question got some  $b \in \{0, 1\}$  as its received word, it will always send b since it now knows the value.



In the last lecture, we saw that the message sent from check node to variable node  $c_i$  depends on the messages it received from nodes other than  $c_i$  itself. Using this property and the fact that the number of iterations is at most a fourth of the girth of the factor graph, we showed that all messages received by a check (or, for that matter, variable) node in any round  $i < \ell$  are independent random variables. In another lecture, we will see that we can implement this message passing algorithm in O(n) time.

Recall, we defined  $s_r$  as the probability of an erasure being passed from variable to check nodes in round r, and  $s'_r$  as being the probability of an erasure being passed in the other drection. Next, we define  $s_{r+1}$  in terms of  $s_r$ .

Recall that in round r + 1,  $c_i$  sends an erasure to  $p_j$  if and only if all its incoming messages in round r were erasures and it received  $y_i = ?$ . Thus,  $s_{r+1} = \alpha \cdot (s'_r)^{dv-1}$ , where we used the fact that all the messages received by  $c_1$  are independent random variables and the fact that  $s'_r$  is independent of the choice of edge.

 $p_i$  will send an erasure to  $c_j$  if any one of the incoming messages was an erasure. Thus, we have that  $s'_r = (1 - s_r)^{d_c - 1}$  and

$$s_{r+1} = \alpha (1 - (r - s_r)^{d_c - 1})^{d_v - 1}.$$

## **Threshold Computation** 1

Next, we will analyze the performance of the message passing algorithm. To do that we will need the following definition.

**Definition 1.1.**  $\alpha^* = \min_{x \in [0,1]} \frac{x}{(1-(1-x)^{d_c-1})^{d_v-1}}$ 

**Theorem 1.2.** If  $\alpha < \alpha^*$ , the message decoder recovers the transmitted code word with probability  $1 - 2^{-n^{\Omega(1)}}$ 

*Proof.* Pick  $\ell = \lfloor \frac{g-1}{4} \rfloor$  (as we need  $4\ell < g$ , where g is the girth in round  $\ell$  and  $\ell$  is the total number of rounds for our proof that all messages are independent variables). Then,  $\ell = \Omega(\log n)$ .

We will show that  $s_{\ell} \leq 2^{-n^{\Omega(1)}}$ .

By the union bound the probability that there's no erasure sent in round  $\ell$  is at least 1 - (#edges) $s_{\ell}$ , and since the number of edges is O(n), this is at least  $1 - 2^{-n^{\Omega(1)}}$ , as required.

We show this in two steps:

1. After t = O(1) rounds,  $s_t$  is less than  $\min(\frac{1}{d_t+1}) \triangleq b - 1$ .

2. For any round  $r \geq t$ ,  $s_{r+1} < s_r^{1+\varepsilon}$  for some  $\varepsilon > 0$ .

If we can show these two steps to be true, we will have that  $s_{\ell} \leq 2^{-n^{\Omega(1)}}$ . This holds since  $s_{\ell} < (s_t)^{(1+\varepsilon)^{\ell-t}}$  and so, by Step 1,  $s_{\ell} < (\frac{1}{a})^{(1+\varepsilon)^{\ell-t}}$  for some a > 1. Finally, as t = O(1) and  $\ell = \Omega(\log n), \, s_\ell \le 2^{-n^{\Omega(1)}}$ 

We will now show that the statements above are true.

We begin with step 1.

Define  $g(x) \triangleq \frac{x}{(1-(1-x)^{d_c-1})^{d_v-1}}$ , and note that we have  $\alpha^* = \min_{x \in [0,1]} g(x)$ . Define  $f(\alpha_1, x) = \alpha(1-(1-x)^{d_c-1})^{d_v-1}$ . Note that  $s_{r+1} = f(\alpha, s_r)$ .

Further, by definition,

$$f(\alpha, x) = \frac{\alpha x}{g(x)} = \left(\frac{\alpha}{\alpha^*}\right)\left(\frac{\alpha^* x}{g(x)}\right) \le \left(\frac{\alpha}{\alpha^*}\right)x,$$

where the inequality follows from the fact that  $\alpha^* \leq g(x)$ .

Thus, for all  $r, s_{r+1} < (\frac{\alpha}{\alpha^*})s_r$ , and note that  $\frac{\alpha}{\alpha^*} < 1$ .

To make sure that  $s_r < b$  where b is NEED DEF HERE, we can use the above equation,  $t = O(\log_{\frac{\alpha}{t}}(\frac{\alpha}{b}))$  times. Note that t = O(1) as claimed.

This proved Step 1. We now move to Step 2. For this, we will need the following fact: Fix r/geqt. If  $a \ge 1$  is an integer and ax < 1,  $(1-x)^a \ge 1 - ax$ . We leave the proof as an exercise. Using the fact above and the fact that  $s_r \le \frac{1}{d_c-1}$  (as  $s_t \le \frac{1}{d_c-1}$  and  $s_r \le s_t$  we get:

$$s_{r+1} = \alpha (1 - (1 - s_r)^{d_c - 1})^{d_v - 1} \le \alpha ((d_c - 1)s_r)^{d_v - 1}$$

By Step 1, we also have  $s_r \leq s_t < \frac{1}{(\alpha(d_c-1)^{d_v-1})^{\frac{1}{d_v-2-\varepsilon}}}$  and it is also the case that  $s_{r+1} < s_r^{(1+\varepsilon)}$ . This completes the proof. 

Using standard calculus, it can be shown that  $\alpha^*$  is is the root of the polynomial  $P(x) = (\frac{d_v-1}{d_c-1}-1)x^{d_c}-2-\sum_{i=0}^{d_c-3}x^i$ .

**Remark 1.3.** As a few concrete notes, from this formula, note that when  $d_v = 2$ ,  $\alpha^* = 0$  so for any meaningful performance we need  $d_v \ge 3$  which then requires  $d_c \ge 4$  for positive rate. If we choose these exact values,  $d_v = 3$  and  $d_c = 4$ , we have  $\alpha^* = 0.6474$ . At capacity, we would have  $\alpha = 1 - rate$  and since rate is  $1 - \frac{d_v}{d_c}$ , this is  $\frac{3}{4} = 0.75 < \alpha^*$ . In fact, it can be shown that capacity is never achieved for any fixed values of  $d_v$  and  $d_c$ .